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Abstract

We address the problem of estimating the difference between two probability den-
sities. A naive approach is a two-step procedure of first estimating two densities
separately and then computing their difference. However, such a two-step procedure
does not necessarily work well because the first step is performed without regard
to the second step and thus a small estimation error incurred in the first stage can
cause a big error in the second stage. In this paper, we propose a single-shot pro-
cedure for directly estimating the density difference without separately estimating
two densities. We derive a non-parametric finite-sample error bound for the pro-
posed single-shot density-difference estimator and show that it achieves the optimal
convergence rate. We then show how the proposed density-difference estimator can
be utilized in L2-distance approximation. Finally, we experimentally demonstrate
the usefulness of the proposed method in robust distribution comparison such as
class-prior estimation and change-point detection.
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1 Introduction

When estimating a quantity consisting of two elements, a two-stage approach of first
estimating the two elements separately and then approximating the target quantity based
on the estimates of the two elements often performs poorly, because the first stage is
carried out without regard to the second stage and thus a small estimation error incurred
in the first stage can cause a big error in the second stage. To cope with this problem,
it would be more appropriate to directly estimate the target quantity in a single-shot
process without separately estimating the two elements.

A seminal example that follows this general idea is pattern recognition by the support
vector machine1 (Boser et al., 1992; Cortes & Vapnik, 1995; Vapnik, 1998): Instead of
separately estimating two probability distributions of positive and negative patterns, the
support vector machine directly learns the boundary between the positive and negative
classes that is sufficient for pattern recognition. More recently, a problem of estimating
the ratio of two probability densities was tackled in a similar fashion (Qin, 1998; Sugiyama
et al., 2008; Gretton et al., 2009; Kanamori et al., 2009; Nguyen et al., 2010; Kanamori
et al., 2012; Sugiyama et al., 2012b; Sugiyama et al., 2012a): The ratio of two probabil-
ity densities is directly estimated without going through separate estimation of the two
probability densities.

In this paper, we further explore this line of research, and propose a method for di-
rectly estimating the difference between two probability densities in a single-shot process.
Density ratios and density differences can both be used for comparing probability densities
via approximation of divergences such as the Kullback-Leibler (KL) divergence (Kullback
& Leibler, 1951) and the L2-distance. A divergence estimator can be used for solving var-
ious machine learning tasks including class-balance estimation under class-prior change
(Saerens et al., 2002; du Plessis & Sugiyama, 2012), image segmentation and registra-
tion (Liu et al., 2010; Atif et al., 2003), target object detection and recognition (Gray
& Principe, 2010; Yamanaka et al., 2013b), feature selection and extraction (Torkkola,
2003; Suzuki & Sugiyama, 2013), and change-point detection in time series (Kawahara &
Sugiyama, 2012; Liu et al., 2013; Yamanaka et al., 2013a). In this divergence approxi-
mation scenario, density differences are more advantageous than density ratios in several
aspects. For example, density ratios can be unbounded even for simple cases (Cortes
et al., 2010; Yamada et al., 2013), whereas density differences are always bounded as
long as both densities are bounded. Thus, density differences are expected to be learned
more easily than density ratios. Also, density ratios are asymmetric and thus the “direc-
tion” needs to be determined by a user, whereas density differences are symmetric and
thus there is no need to think about the direction. These are our primal motivations to
develop a density-difference estimator.

1More precisely, Vapnik (1998) said as follows: If you possess a restricted amount of information
for solving some problem, try to solve the problem directly and never solve a more general problem as
an intermediate step. It is possible that the available information is sufficient for a direct solution but
is insufficient for solving a more general intermediate problem. Two-stage density-difference estimation
corresponds to solving a more general problem of separate density estimation in the first stage.
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Note that density ratios have their own applications beyond divergence approxima-
tion to which density differences may not be applied, such as importance sampling and
conditional probability estimation (Sugiyama et al., 2012a). On the other hand, density
differences also have their own unique applications to which density ratios may not be
applied, such as the estimation of highest density-difference regions in flow cytometric
data analysis (Duong et al., 2009) and unsupervised labeling (du Plessis, 2013). This
implies that, for density ratios and density differences, neither of them includes the other
in terms of ranges of applications. This is our additional motivation to pursue a practical
algorithm for density-difference estimation.

For this density-difference estimation problem, we propose a single-shot method, called
the least-squares density-difference (LSDD) estimator, that directly estimates the den-
sity difference without separately estimating two densities. LSDD is derived within the
framework of kernel regularized least-squares estimation, and its solution can be com-
puted analytically in a computationally efficient and stable manner. Furthermore, LSDD
is equipped with cross-validation, and thus all tuning parameters such as the kernel width
and the regularization parameter can be systematically and objectively optimized. We
derive a finite-sample error bound for the LSDD estimator in a non-parametric setup and
show that it achieves the optimal convergence rate.

We also apply LSDD to L2-distance estimation and show that it is more accurate than
the difference of KDEs, which tends to severely underestimate the L2-distance (Anderson
et al., 1994). Compared with the KL divergence, the L2-distance is more robust against
outliers (Basu et al., 1998; Scott, 2001; Besbeas & Morgan, 2004). We experimentally
demonstrate the usefulness of LSDD in robust distribution comparison such as semi-
supervised class-prior estimation and unsupervised change detection.

The rest of this paper is structured as follows. In Section 2, we derive the LSDD
method and investigate its theoretical properties. In Section 3, we show how LSDD
can be utilized for L2-distance approximation. In Section 4, we illustrate the numerical
behavior of LSDD. Finally, we conclude in Section 5.

2 Density-Difference Estimation

In this section, we propose a single-shot method for estimating the difference between two
probability densities from samples, and analyze its theoretical properties.

2.1 Problem Formulation and Naive Approach

First, we formulate the problem of density-difference estimation.
Suppose that we are given two sets of independent and identically distributed samples

X := {xi}ni=1 and X ′ := {x′
i′}n

′

i′=1 from probability distributions on Rd with densities p(x)
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and p′(x), respectively:

X := {xi}ni=1
i.i.d.∼ p(x),

X ′ := {x′
i′}n

′

i′=1
i.i.d.∼ p′(x).

Our goal is to estimate the difference f(x) between p(x) and p′(x) from the samples X
and X ′:

f(x) := p(x)− p′(x).

A naive approach to density-difference estimation is to use kernel density estimators
(KDEs) (Silverman, 1986). For Gaussian kernels, the KDE-based density-difference esti-
mator is given by

f̃(x) := p̂(x)− p̂′(x),

where

p̂(x) :=
1

n(2πσ2)d/2

n∑
i=1

exp

(
−∥x− xi∥2

2σ2

)
,

p̂′(x) :=
1

n′(2πσ′2)d/2

n′∑
i′=1

exp

(
−∥x− x

′
i′∥2

2σ′2

)
.

The Gaussian widths σ and σ′ may be determined based on cross-validation (Härdle et al.,
2004).

However, we argue that the KDE-based density-difference estimator is not the best
approach because of its two-step nature: Small estimation error incurred in each density
estimate can cause a big error in the final density-difference estimate. More intuitively,
good density estimators tend to be smooth and thus a density-difference estimator ob-
tained from such smooth density estimators tends to be over-smoothed (Hall & Wand,
1988; Anderson et al., 1994, see also numerical experiments in Section 4.1.1).

To overcome this weakness, we give a single-shot procedure of directly estimating the
density difference f(x) without separately estimating the densities p(x) and p′(x).

2.2 Least-Squares Density-Difference Estimation

In our proposed approach, we fit a density-difference model g(x) to the true density-
difference function f(x) under the squared loss2:

argmin
g

∫ (
g(x)− f(x)

)2
dx. (1)

2Hall and Wand (1988) used a leave-one-out variant of this criterion for jointly determining the
bandwidths of two KDEs. See Section 4 for its numerical behavior.



Density-Difference Estimation 5

We use the following linear-in-parameter model as g(x):

g(x) =
b∑

ℓ=1

θℓψℓ(x) = θ
⊤ψ(x), (2)

where b denotes the number of basis functions, ψ(x) = (ψ1(x), . . . , ψb(x))
⊤ is a b-

dimensional basis function vector, θ = (θ1, . . . , θb)
⊤ is a b-dimensional parameter vector,

and ⊤ denotes the transpose. In practice, we use the following non-parametric Gaussian
kernel model as g(x):

g(x) =
n+n′∑
ℓ=1

θℓ exp

(
−∥x− cℓ∥

2

2σ2

)
, (3)

where (c1, . . . , cn, cn+1, . . . , cn+n′) := (x1, . . . ,xn,x
′
1, . . . ,x

′
n′) are Gaussian kernel centers.

If n+n′ is large, we may use only a subset of {x1, . . . ,xn,x
′
1, . . . ,x

′
n′} as Gaussian kernel

centers.
For the model (2), the optimal parameter θ∗ is given by

θ∗ := argmin
θ

∫ (
g(x)− f(x)

)2
dx

= argmin
θ

[∫
g(x)2dx− 2

∫
g(x)f(x)dx

]
= argmin

θ

[
θ⊤Hθ − 2h⊤θ

]
=H−1h,

where H is the b× b matrix and h is the b-dimensional vector defined as

H :=

∫
ψ(x)ψ(x)⊤dx,

h :=

∫
ψ(x)p(x)dx−

∫
ψ(x′)p′(x′)dx′.

Note that, for the Gaussian kernel model (3), the integral in H can be computed analyt-
ically as

Hℓ,ℓ′ =

∫
exp

(
−∥x− cℓ∥

2

2σ2

)
exp

(
−∥x− cℓ

′∥2

2σ2

)
dx

= (πσ2)d/2 exp

(
−∥cℓ − cℓ

′∥2

4σ2

)
,

where d denotes the dimensionality of x. This is a part of the reason why we chose
the Gaussian kernel model in practice. Another reason for this choice is its theoretical
superiority, as discussed in Section 2.3.2.
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Replacing the expectations in h by empirical estimators and adding an ℓ2-regularizer
to the objective function, we arrive at the following optimization problem:

θ̂ := argmin
θ

[
θ⊤Hθ − 2ĥ

⊤
θ + λθ⊤θ

]
, (4)

where λ (≥ 0) is the regularization parameter and ĥ is the b-dimensional vector defined
as

ĥ =
1

n

n∑
i=1

ψ(xi)−
1

n′

n′∑
i′=1

ψ(x′
i′).

Taking the derivative of the objective function in Eq.(4) and equating it to zero, we can

obtain the solution θ̂ analytically as

θ̂ = (H + λIb)
−1 ĥ,

where Ib denotes the b-dimensional identity matrix.
Finally, a density-difference estimator f̂(x) is given as

f̂(x) = θ̂
⊤
ψ(x). (5)

We call this the least-squares density-difference (LSDD) estimator.

2.3 Theoretical Analysis

Here, we theoretically investigate the behavior of the LSDD estimator.

2.3.1 Parametric Convergence

First, we consider a linear parametric setup where basis functions in our density-difference
model (2) are fixed.

Suppose that n/(n + n′) converges to η ∈ [0, 1], and let λ = o(
√
1/n,

√
1/n′). Then

the central limit theorem (Rao, 1965) asserts that
√

nn′

n+n′ (θ̂− θ∗) converges in law to the

normal distribution with mean 0 and covariance matrix

H−1((1− η)V p + ηV p′)H
−1,

where V p denotes the covariance matrix of ψ(x) under the probability density p(x):

V p :=

∫ (
ψ(x)−ψp

) (
ψ(x)−ψp

)⊤
p(x)dx, (6)

and ψp denotes the expectation of ψ(x) under the probability density p(x):

ψp :=

∫
ψ(x)p(x)dx.

This result implies that the LSDD estimator has asymptotic normality with asymptotic
order

√
1/n+ 1/n′, which is the optimal convergence rate in the parametric setup.
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2.3.2 Non-Parametric Error Bound

Next, we consider a non-parametric setup where a density-difference function is learned
in a Gaussian reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950).

Let Hγ be the Gaussian RKHS with width γ:

kγ(x,x
′) = exp

(
−∥x− x

′∥2

γ2

)
.

Let us consider a slightly modified LSDD estimator that is more suitable for non-
parametric error analysis3: For n′ = n,

f̂ := argmin
g∈Hγ

[
∥g∥2L2 − 2

(
1

n

n∑
i=1

g(xi)−
1

n

n∑
i′=1

g(x′
i′)

)
+ λ∥g∥2Hγ

]
,

where ∥ · ∥L2 denotes the L2-norm and ∥ · ∥Hγ denotes the norm in RKHS Hγ.
Then we can prove that, for all ρ, ρ′ > 0, there exists a constant K such that, for all

τ ≥ 1 and n ≥ 1, the non-parametric LSDD estimator with appropriate choice of λ and
γ satisfies4

∥f̂ − f∥2L2 + λ∥f̂∥2Hγ
≤ K

(
n− 2α

2α+d
+ρ + τn−1+ρ′

)
(7)

with probability not less than 1−4e−τ . Here, d denotes the dimensionality of input vector
x, and α ≥ 0 denotes the regularity of Besov space to which the true density-difference
function f belongs (smaller/larger α means f is “less/more complex”; see Appendix A for

its precise definition). Because n− 2α
2α+d is the optimal learning rate in this setup (Eberts

& Steinwart, 2011), the above result shows that the non-parametric LSDD estimator
achieves the optimal convergence rate.

It is known that, if the naive KDE with a Gaussian kernel is used for estimating a
probability density with regularity α > 2, the optimal learning rate cannot be achieved
(Farrell, 1972; Silverman, 1986). To achieve the optimal rate by KDE, we should choose
a kernel function specifically tailored to each regularity α (Parzen, 1962). However, such
a kernel function is not non-negative and it is difficult to implement it in practice. On
the other hand, our LSDD estimator can always achieve the optimal learning rate for a
Gaussian kernel without regard to regularity α.

2.4 Model Selection by Cross-Validation

The above theoretical analyses showed the superiority of LSDD in terms of the convergence
rates. However, the practical performance of LSDD depends on the choice of models (i.e.,

3More specifically, the regularizer is replaced from the squared ℓ2-norm of parameters to the squared
RKHS-norm of a learned function, which is necessary to establish consistency. Nevertheless, we use the
squared ℓ2-norm of parameters in experiments because it is simpler and performs well in practice.

4Because our theoretical result is highly technical, we only describe a rough idea here. More pre-
cise statement of the result and its complete proof are provided in Appendix A, where we utilize the
mathematical technique developed in Eberts and Steinwart (2011) for a regression problem.
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the kernel width σ and the regularization parameter λ). Here, we show that the model
can be optimized by cross-validation (CV).

More specifically, we first divide the samples X = {xi}ni=1 and X ′ = {x′
i′}n

′

i′=1 into T
disjoint subsets {Xt}Tt=1 and {X ′

t}Tt=1, respectively. Then we obtain a density-difference

estimate f̂t(x) from X\Xt and X ′\X ′
t (i.e., all samples without Xt and X ′

t ), and compute
its hold-out error for Xt and X ′

t as

CV(t) :=

∫
f̂t(x)

2dx− 2

|Xt|
∑
x∈Xt

f̂t(x) +
2

|X ′
t |
∑
x′∈X ′

t

f̂t(x
′),

where |X | denotes the number of elements in the set X . We repeat this hold-out validation
procedure for t = 1, . . . , T , and compute the average hold-out error as

CV :=
1

T

T∑
t=1

CV(t).

Finally, we choose the model that minimizes CV.
A MATLAB R⃝ implementation of LSDD is available from

‘http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSDD/’.

3 L2-Distance Estimation by LSDD

In this section, we consider the problem of approximating the L2-distance between p(x)
and p′(x),

L2(p, p′) :=

∫ (
p(x)− p′(x)

)2
dx, (8)

from samples X := {xi}ni=1 and X ′ := {x′
i′}n

′

i′=1 drawn independently from the probability
distributions with densities p(x) and p′(x), respectively.

3.1 Basic Forms

For an equivalent expression

L2(p, p′) =

∫
f(x)p(x)dx−

∫
f(x′)p′(x′)dx′,

if we replace f(x) with an LSDD estimator f̂(x) and approximate the expectations by
empirical averages, the following L2-distance estimator can be obtained:

L2(p, p′) ≈ ĥ
⊤
θ̂. (9)
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Similarly, for another expression

L2(p, p′) =

∫
f(x)2dx,

replacing f(x) with an LSDD estimator f̂(x) gives another L2-distance estimator:

L2(p, p′) ≈ θ̂
⊤
Hθ̂. (10)

3.2 Reduction of Bias Caused by Regularization

Eq.(9) and Eq.(10) themselves give approximations to L2(p, p′). Nevertheless, we argue
that the use of their combination, defined by

L̂2(X ,X ′) := 2ĥ
⊤
θ̂ − θ̂

⊤
Hθ̂, (11)

is more sensible.
To explain the reason, let us consider a generalized L2-distance estimator of the fol-

lowing form:

βĥ
⊤
θ̂ + (1− β)θ̂

⊤
Hθ̂, (12)

where β is a real scalar. If the regularization parameter λ (≥ 0) is small, then Eq.(12)
can be expressed as

βĥ
⊤
θ̂ + (1− β)θ̂

⊤
Hθ̂ = ĥ

⊤
H−1ĥ− λ(2− β)ĥ

⊤
H−2ĥ+ op(λ), (13)

where op denotes the probabilistic order (the derivation of Eq.(13) is given in Appendix B).
Thus, up to Op(λ), the bias introduced by regularization (i.e., the second term in the right-
hand side of Eq.(13) that depends on λ) can be eliminated if β = 2, which yields Eq.(11).
Note that, if no regularization is imposed (i.e., λ = 0), both Eq.(9) and Eq.(10) yield

ĥ
⊤
H−1ĥ, the first term in the right-hand side of Eq.(13).
Eq.(11) is actually equivalent to the negative of the optimal objective value of the

LSDD optimization problem without regularization (i.e., Eq.(4) with λ = 0). This can
be naturally interpreted through a lower bound of L2(p, p′) obtained by Legendre-Fenchel
convex duality (Rockafellar, 1970):

L2(p, p′) = sup
g

[
2

(∫
g(x)p(x)dx−

∫
g(x)p′(x)dx

)
−
∫
g(x)2dx

]
,

where the supremum is attained at g = f . If the expectations are replaced by empirical es-
timators and the linear-in-parameter model (2) is used as g, the above optimization prob-
lem is reduced to the LSDD objective function without regularization (see Eq.(4)). Thus,
LSDD corresponds to approximately maximizing the above lower bound and Eq.(11) is
its maximum value.

Through eigenvalue decomposition of H , we can show that

2ĥ
⊤
θ̂ − θ̂

⊤
Hθ̂ ≥ ĥ

⊤
θ̂ ≥ θ̂

⊤
Hθ̂.

Thus, our approximator (11) is not less than the plain approximators (9) and (10).
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3.3 Further Bias Correction

ĥ
⊤
H−1ĥ, the first term in Eq.(13), is an essential part of the L2-distance estimator

(11). However, it is actually a slightly biased estimator of the target quantity h⊤H−1h
(= θ∗⊤Hθ∗ = h⊤θ∗):

E[ĥ
⊤
H−1ĥ] = h⊤H−1h+ tr

(
H−1

(
1

n
V p +

1

n′V p′

))
, (14)

where E denotes the expectation over all samples X = {xi}ni=1 and X ′ = {x′
i′}n

′

i′=1, and
V p and V p′ are defined by Eq.(6) (its derivation is given in Appendix C).

The second term in the right-hand side of Eq.(14) is an estimation bias that is generally
non-zero. Thus, based on Eq.(14), we can construct a bias-corrected L2-distance estimator
as

L̃2(X ,X ′) := 2ĥ
⊤
θ̂ − θ̂

⊤
Hθ̂ − tr

(
H−1

(
1

n
V̂ p +

1

n′ V̂ p′

))
, (15)

where V̂ p is an empirical estimator of covariance matrix V p,

V̂ p :=
1

n

n∑
i=1

(
ψ(xi)− ψ̂p

)(
ψ(xi)− ψ̂p

)⊤
,

and ψ̂p is an empirical estimator of the expectation ψp:

ψ̂p :=
1

n

n∑
i=1

ψ(xi).

The true L2-distance is non-negative by definition (see Eq.(8)), but the above bias-
corrected estimate can take a negative value. Following the same line as Baranchik (1964),
the positive-part estimator may be more accurate:

L
2
(X ,X ′) := max

{
0, L̃2(X ,X ′)

}
.

However, in our preliminary experiments, L
2
(X ,X ′) does not always perform well partic-

ularly whenH is ill-conditioned. For this reason, we practically propose to use L̂2(X ,X ′)
defined by Eq.(11).

4 Experiments

In this section, we experimentally evaluate the performance of LSDD.

4.1 Numerical Examples

First, we show numerical examples using artificial datasets.
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4.1.1 LSDD vs. KDE

Let

p(x) = N(x; (µ, 0, . . . , 0)⊤, (4π)−1Id),

p′(x) = N(x; (0, 0, . . . , 0)⊤, (4π)−1Id),

where N(x;µ,Σ) denotes the multi-dimensional normal density with mean vector µ and
variance-covariance matrix Σ with respect to x, and Id denotes the d-dimensional identity
matrix. Before feeding data samples to algorithms, we pre-normalize them to have unit
variance in the element-wise manner.

In LSDD, the Gaussian width σ and the regularization parameter λ are chosen by
5-fold cross-validation in terms of the LSDD criterion (see Section 2.4) from the following
grid values:

σ ∈ {10−2, 10−1.5, 10−1, 10−0.5, 100},
λ ∈ {10−1, 10−0.5, 100, 100.5, 101}.

We experimentally compare the behavior of LSDD with two methods based on the differ-
ence of kernel density estimators (KDEs):

KDEi: Two Gaussian widths are independently chosen from the above candidate values
based on 5-fold least-squares cross-validation. That is, for each density, we perform
cross-validation in terms of the L2-distance between estimated and true densities so
that the density is optimally approximated (Härdle et al., 2004).

KDEj Two Gaussian widths are jointly chosen from the above candidate values based on
5-fold cross-validation in terms of the LSDD criterion (Hall & Wand, 1988). That
is, we compute the cross-validated LSDD criterion as a function of two Gaussian
widths and find the best pair that minimizes the criterion.

We first illustrate the behavior of the LSDD and KDE-based methods under d = 1 and
n = n′ = 200. Figure 1 depicts the data samples and density-difference estimation results
obtained by LSDD, KDEi, and KDEj for µ = 0 (i.e., f(x) = p(x) − p′(x) = 0). Cross-
validation scores of LSDD are also included at the bottom of the figure. The figure shows
that LSDD and KDEj give accurate estimates of the true density difference f(x) = 0. On
the other hand, the density-difference estimate obtained by KDEi is rather fluctuated,
although both densities are reasonably well approximated by KDEs. This illustrates an
advantage of directly estimating the density difference without going through separate
estimation of each density. Figure 2 depicts the results for µ = 0.5 (i.e., f(x) ̸= 0),
showing again that LSDD performs well. KDEi and KDEj give the same estimation
result for this dataset, which slightly underestimates the peaks.

Next, we compare the performance of L2-distance approximation based on LSDD,
KDEi, and KDEj. For µ = 0, 0.2, 0.4, 0.6, 0.8 and d = 1, 5, we draw n = n′ = 200
samples from the above p(x) and p′(x). Figure 3 depicts the mean and standard error of



Density-Difference Estimation 12

−1 −0.5 0 0.5 1
0

20

40

x

 

 

x
i

−1 −0.5 0 0.5 1
0

20

40

x

 

 

x’
i’

(a) Samples

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

f(x)

f(x)
^

(b) LSDD (σ = 100 and λ = 101)

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

p(x)−p’(x)

p(x)−p’(x)

p(x)

p(x)

p’(x)

p’(x)

^^

^

^

(c) KDEi (σ = 10−1 and σ′ = 10−1)

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

f(x)

f(x)
^

(d) KDEj (σ = 100 and σ′ = 100)

−1 −0.5 0 0.5 1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

log
10
λ

C
V

 s
co

re

σ=10

σ=10

σ=10

-2

σ=10

σ=10

-1.5

-1.5

-1

0

(e) CV scores for LSDD

Figure 1: Estimation of density difference when µ = 0 (i.e., f(x) = p(x) − p′(x) = 0).
In the captions of (b), (c), and (d), model parameters chosen by cross-validation are also
described. σ and σ′ in (c) and (d) denote Gaussian widths for p(x) and p′(x), respectively.
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Figure 2: Estimation of density difference when µ = 0.5 (i.e., f(x) = p(x) − p′(x) ̸= 0).
In the captions of (b), (c), and (d), model parameters chosen by cross-validation are also
described. σ and σ′ in (c) and (d) denote Gaussian widths for p(x) and p′(x), respectively.
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Figure 3: L2-distance estimation by LSDD, KDEi, and KDEj for n = n′ = 200 as functions
of the Gaussian mean µ. Means and standard errors over 1000 runs are plotted.

estimated L2-distances over 1000 runs as functions of mean µ. When d = 1 (Figure 3(a)),
the LSDD-based L2-distance estimator gives the most accurate estimates of the true
L2-distance, whereas the KDEi-based L2-distance estimator slightly underestimates the
true L2-distance for large µ. This is caused by the fact that KDE tends to provide
smooth density estimates (see Figure 2(c) again): Such smooth density estimates are
accurate as density estimates, but the difference of smooth density estimates yields a
small L2-distance estimate (Anderson et al., 1994). More specifically, the density p′(x) is
estimated accurately at around x = 0.5, but negative values of the density difference f(x)
are underestimated there because p̂(x) is smoother than the true density p(x) and thus
its tail values at around x = 0.5 are larger. The KDEj-based L2-distance estimator tends
to improve this drawback of KDEi to some extent, but it still slightly underestimates the
true L2-distance when µ is large.

When d = 5 (Figure 3(b)), the KDE-based L2-distance estimators even severely under-
estimate the true L2-distance for large µ. On the other hand, the LSDD-based L2-distance
estimator still gives reasonably accurate estimates of the true L2-distance even when d = 5.
However, we note that LSDD also slightly underestimates the true L2-distance when µ
is large, because slight underestimation tends to yield smaller variance and thus such
stabilized solutions are more accurate in terms of the bias-variance trade-off.

In Figure 1, we have illustrated that LSDD and KDEj work better than KDEi when
the Gaussian mean is µ = 0. However, in Figure 3(a), KDEi is actually shown to be the
best performing method for µ = 0 in terms of the average over 1000 runs. To fill this gap,
let us depict in Figure 4 histograms of L2-distance estimates obtained by LSDD, KDEi,
and KDEj over 1000 runs for the Gaussian mean µ = 0. This graph shows that LSDD
and KDEj give exactly correct solutions (i.e., zero) about 300 times, whereas KDEi gives
estimates about 0.01 more than 300 times. The graphs plotted in Figure 1 correspond to
such typical results where LSDD and KDEj outperform KDEi. On the other hand, KDEi
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Figure 4: Histograms of L2-distance estimation by LSDD, KDEi, and KDEj over 1000
runs for n = n′ = 200 and the Gaussian mean µ = 0.

stably gives estimates less than 0.1 almost always, whereas LSDD and KDEj occasionally
give large estimates. This rather unstable behavior of LSDD and KDEj, which was
caused by inappropriate choice of the Gaussian width (and the regularization parameter
for LSDD) by cross-validation, led to larger mean values of LSDD and KDEj than KDEi
in Figure 3(a).

Finally, we investigate the behavior of LSDD, KDEi, and KDEj in L2-distance esti-
mation when the numbers of samples from two distributions are imbalanced. Figure 5
plots the means and standard errors of the L2-distance estimated by LSDD, KDEi, and
KDEj for d = 1, 5 and µ = 0, 0.8 over 1000 runs as functions of n′ when n is fixed to 200.

When d = 1 and µ = 0 (Figure 5(a)), all three methods behave similarly and the
accuracy tends to be improved as n′ increases. However, improvement when n′ > n =
200 is moderate. When the input dimensionality is increased to d = 5 (Figure 5(b)),
LSDD and KDEj still have the same tendency. However, KDEi behaves differently and
the approximation error tends to grow as n′ increases. This implies that improving the
accuracy of one of the density estimates does not necessarily improve the overall estimation
accuracy of the density difference.
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Figure 5: L2-distance estimation by LSDD, KDEi, and KDEj for n = 200 as functions of
n′. Means and standard errors over 1000 runs are plotted.

When d = 1 and µ = 0.8 (Figure 5(c)), LSDD tends to provide better estimates as
n′ increases, whereas KDEi and KDEj keep underestimating the true L2-distance even
when n′ is increased. Finally, when d = 5 and µ = 0.8 (Figure 5(d)), LSDD stably
provides reasonably good results and its performance does not change significantly when
n′ is increased. On the other hand, KDEi and KDEj tend to give better results as n′

increases.
Overall, LSDD sometimes gives slightly better results for n′ > n, but its performance

is not significantly different from those for n′ = n. On the other hand, the accuracy of
KDEi and KDEj when n′ is increased gets better or worse depending on the situation.
Thus, having more data samples from one of the distributions does not seem to always
improve the estimation accuracy in density-difference estimation.
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4.1.2 L2-Distance vs. KL-Divergence

The Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) is a popular divergence
measure for comparing probability distributions. The KL-divergence from p(x) to p′(x)
is defined as

KL(p∥p′) :=
∫
p(x) log

p(x)

p′(x)
dx.

First, we illustrate the difference between the L2-distance and the KL-divergence. For
d = 1, let

p(x) = (1− η)N(x; 0, 12) + ηN(x;µ, 1/42),

p′(x) = N(x; 0, 12).

Implications of the above densities are that samples drawn from N(x; 0, 12) are inliers,
whereas samples drawn from N(x;µ, 1/42) are outliers. We set the outlier rate at η = 0.1
and the outlier mean at µ = 0, 2, 4, . . . , 10 (see Figure 6).

Figure 7(a) depicts the L2-distance and the KL-divergence for outlier mean µ =
0, 2, 4, . . . , 10. This shows that both the L2-distance and the KL-divergence increase as µ
increases. However, the L2-distance is bounded from above, whereas the KL-divergence
diverges to infinity as µ tends to infinity. This result implies that the L2-distance is less
sensitive to outliers than the KL-divergence, which well agrees with the observation given
in Basu et al. (1998).

Next, we draw n = n′ = 100 samples from p(x) and p′(x), and estimate the L2-
distance by LSDD and the KL-divergence by the Kullback-Leibler importance estimation
procedure5 (KLIEP) (Sugiyama et al., 2008). Figure 7(b) depicts estimated L2-distance
and KL-divergence for outlier mean µ = 0, 2, 4, . . . , 10 over 100 runs. This shows that
both LSDD and KLIEP reasonably capture the profiles of the true L2-distance and the
KL-divergence, although the scale of KLIEP values is much different from the true values
(see Figure 7(a)) because the estimated normalization factor was unreliable.

Finally, based on the permutation test procedure (Efron & Tibshirani, 1993), we con-
duct hypothesis testing of the null hypothesis whether densities p and p′ are the same.
More specifically, we first compute a distance estimate for the original datasets X and
X ′ and obtain a distance/divergence estimate D̂(X ,X ′). Next, we randomly permute the

|X ∪ X ′| samples, and assign the first |X | samples to a set X̃ and the remaining |X ′|
samples to another set X̃ ′. Then we compute a distance/divergence estimate again using

the randomly permuted datasets X̃ and X̃ ′ and obtain D̃(X̃ , X̃ ′). Because X̃ and X̃ ′ can

be regarded as being drawn from the same distribution, D̃(X̃ , X̃ ′) would take a value close

5Estimation of the KL-divergence from data has been extensively studied recently (Wang et al., 2005;
Sugiyama et al., 2008; Pérez-Cruz, 2008; Silva & Narayanan, 2010; Nguyen et al., 2010). Among them,
KLIEP was shown to possess a superior convergence property and demonstrated to work well in practice
(Sugiyama et al., 2008). KLIEP is based on direct estimation of density ratio p(x)/p′(x) without density
estimation of p(x) and p′(x). See also Nguyen et al. (2010), which proposes essentially the same
procedure.
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Figure 8: Results of two-sample test over 1000 runs for (a) outlier rate η = 0.1 as functions
of outlier mean µ and for (b) outlier mean µ = 10 as functions of outlier rate η.
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to zero. This random permutation procedure is repeated many times (100 times in the

following experiments), and the distribution of D̃(X̃ , X̃ ′) under the null hypothesis (i.e.,
the two distributions are the same) is constructed. Finally, the p-value is approximated

by evaluating the relative ranking of D̂(X ,X ′) in the histogram of D̃(X̃ , X̃ ′). We set the
significance level at 5%.

Figure 8(a) depicts the rejection rate of the null hypothesis (i.e., p = p′) over 1000
runs for outlier rate η = 0.1 and outlier mean µ = 0, 2, 4, . . . , 10, based on the L2-distance
estimated by LSDD and the KL-divergence estimated by KLIEP. This shows that the
KLIEP-based test rejects the null hypothesis more frequently for large µ, whereas the
rejection rate of the LSDD-based test is almost unchanged with respect to µ.

Figure 8(b) depicts the rejection rate of the null hypothesis for outlier mean µ = 10 and
outlier rate η = 0, 0.1, 0.2, . . . , 0.4. When η = 0 (i.e., no outliers), both the LSDD-based
test and the KLIEP-based test accept the null hypothesis with the designated significance
level approximately. When η = 0.1, the LSDD-based test still keeps a low rejection rate,
whereas the KLIEP-based test tends to reject the null hypothesis more frequently. When
η ≥ 0.3, both the LSDD-based test and the KLIEP-based test always reject the null
hypothesis.

Overall, the above results imply that the two-sample homogeneity test by LSDD is
more robust against outliers (i.e., two distributions tend to be regarded as the same even
in the presence of outliers) than the KLIEP-based test.

4.2 Applications

Here, we apply LSDD to semi-supervised class-balance estimation under class-prior change
and change-point detection in time series.

4.2.1 Semi-Supervised Class-Balance Estimation

In real-world pattern recognition tasks, changes in class balance between the training and
test phases are often observed. In such cases, naive classifier training produces significant
estimation bias because the class balance in the training dataset does not properly reflect
that of the test dataset. Here, we consider the problem of learning the class balance of a
test dataset in a semi-supervised learning setup where unlabeled test samples are provided
in addition to labeled training samples (Chapelle et al., 2006).

More formally, we consider the binary classification problem of classifying pattern
x ∈ Rd to class y ∈ {+1,−1} under class-prior change, where the class-prior probability
for training data ptrain(y) and that for test data ptest(y) are different:

ptrain(y) ̸= ptest(y).

However, we assume that the class-conditional density for training data ptrain(x|y) and
that for test data ptest(x|y) are unchanged:

ptrain(x|y) = ptest(x|y).
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Figure 9: Schematic illustration of semi-supervised class-balance estimation.

Note that training and test joint densities ptrain(x, y) and ptest(x, y) as well as training
and test input densities ptrain(x) and ptest(x) are generally different under this setup.

Here, our objective is to estimate ptest(y) from labeled training samples {(xi, yi)}ni=1

drawn independently from ptrain(x, y) and unlabeled test samples {x′
i′}

n′

i′=1 drawn inde-

pendently from ptest(x). Given test labels {y′i′}
n′

i′=1, ptest(y) can be naively estimated by
n′
y/n

′, where n′
y is the number of test samples in class y. Here, however, we want to

estimate ptest(y) without {y′i′}
n′

i′=1.
The class balance in the test set can be estimated by matching a mixture of class-wise

training input densities,

qtest(x;π) := πptrain(x|y = +1) + (1− π)ptrain(x|y = −1),

to the test input density ptest(x) (Saerens et al., 2002), where π ∈ [0, 1] is a mixing co-
efficient to learn. See Figure 9 for schematic illustration. Here, we use the L2-distance
estimated by LSDD, KDEi, and KDEj (see Section 4.1.1) for this distribution match-
ing. Note that, when LSDD is used to estimate the L2-distance, separate estimation
of ptrain(x|y = ±1) is not involved, but the difference between ptest(x) and qtest(x;π) is
directly estimated.

As an additional baseline, we include the EM-based class-prior estimation method
(Saerens et al., 2002), which actually corresponds to distribution matching under the KL
divergence. More specifically, in the EM-based algorithm, test class-prior estimate p̂test(y)
and test class-posterior estimate p̂test(y|x) are iteratively estimated as follows:

1. Obtain an estimate of the training class-posterior probability, p̂train(y|x), from la-
beled training samples {(xi, yi)}ni=1, for example, by kernel logistic regression (Hastie
et al., 2001) or its squared-loss variant (Sugiyama, 2010).

2. Obtain an estimate of the training class-prior probability from training data
{(xi, yi)}ni=1 as p̂train(y) = ny/n, where ny is the number of training samples in
class y.

3. Set the initial estimate of the test class-posterior probability as

p̂test(y)←− p̂train(y).
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4. Compute a new test class-posterior estimate p̂test(y|x) based on the current test
class-prior estimate p̂test(y) as

p̂test(y|x)←−
p̂test(y)p̂train(y|x)/p̂train(y)∑c

y′=1 p̂test(y
′)p̂train(y′|x)/p̂train(y′)

.

5. Compute a new test class-prior estimate p̂test(y) based on the current test class-prior
estimate p̂test(y|x) as

p̂test(y)←−
1

n′

n′∑
i′=1

p̂test(y|x′
i′).

6. Iterate 4. and 5. until convergence.

We use four UCI benchmark datasets6 for experiments, where we randomly choose
10 labeled training samples from each class and 50 unlabeled test samples following true
class-prior

π∗ = 0.1, 0.2, . . . , 0.9.

The left graphs in Figure 10 plot the mean and standard error of the squared difference
between true and estimated class-balances π. These graphs show that LSDD tends to
provide better class-balance estimates than alternative approaches.

Next, we use the estimated class balance to train a classifier. We use a weighted ℓ2-
regularized least-squares classifier (Rifkin et al., 2003). That is, a class label ŷ for a test
input x is estimated by

ŷ = sign

(
n∑

ℓ=1

α̂ℓK(x,xℓ)

)
,

where K(x,x′) is the Gaussian kernel function with kernel width κ. {α̂ℓ}nℓ=1 are learned
parameters given by

(α̂1, . . . , α̂n) := argmin
α1,...,αn

 n∑
i=1

πyi
nyi/n

(
n∑

ℓ=1

αℓK(xi,xℓ)− yi

)2

+ δ

n∑
ℓ=1

α2
ℓ

 ,
where π+1 = π, π−1 = 1− π, and δ (≥ 0) is the regularization parameter. The Gaussian
width κ and the regularization parameter δ are chosen by 5-fold weighted cross-validation
(Sugiyama et al., 2007) in terms of the misclassification error.

The right graphs in Figure 10 plot the test misclassification error over 1000 runs. The
results show the LSDD-based method provides lower classification errors, which would be
brought by good estimates of test class-balances.

6http://archive.ics.uci.edu/ml/
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Figure 10: Results of semi-supervised class-balance estimation. Left: Squared error of
class balance estimation. Right: Misclassification error by a weighted ℓ2-regularized least-
squares classifier with weighted cross-validation.
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Figure 11: Schematic illustration of unsupervised change detection.

4.2.2 Unsupervised Change Detection

The objective of change detection is to discover abrupt property changes behind time-
series data.

Let y(t) ∈ Rm be an m-dimensional time-series sample at time t, and let

Y (t) := [y(t)⊤,y(t+ 1)⊤, . . . ,y(t+ k − 1)⊤]⊤ ∈ Rkm

be a subsequence of time series at time t with length k. We treat the subsequence Y (t)
as a sample, instead of a single point y(t), by which time-dependent information can be
incorporated naturally (Kawahara & Sugiyama, 2012). Let Y(t) be a set of r retrospective
subsequence samples starting at time t:

Y(t) := {Y (t),Y (t+ 1), . . . ,Y (t+ r − 1)}.

Our strategy is to compute a certain dissimilarity measure between two consecutive
segments Y(t) and Y(t+r), and use it as the plausibility of change points (see Figure 11).
As a dissimilarity measure, we use the L2-distance estimated by LSDD and the KL-
divergence estimated by the KL importance estimation procedure (KLIEP) (Sugiyama
et al., 2008). We set k = 10 and r = 50.

We use two datasets. One is the IPSJ SIG-SLP Corpora and Environments for Noisy
Speech Recognition (CENSREC) dataset7. This dataset was provided by the National
Institute of Informatics, Japan that records human voice in a noisy environment such
as a restaurant. Another dataset is the Human Activity Sensing Consortium (HASC)
challenge 2011 8, which provides human activity information collected by portable three-
axis accelerometers. Because the orientation of the accelerometers is not necessarily fixed,
we take the ℓ2-norm of the 3-dimensional data. The HASC dataset is relatively simple,
so we artificially add zero-mean Gaussian noise with standard deviation 5 at each time
point with probability 0.005.

7http://research.nii.ac.jp/src/en/CENSREC-1-C.html
8urlhttp://hasc.jp/hc2011/
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(a) CENCREC dataset
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Figure 12: Illustrative results of unsupervised change detection for (a) CENSREC speech
data and (b) HASC dataset. Original time-series data is plotted in the top graphs, and
change scores obtained by KLIEP and LSDD are plotted in the bottom graphs.
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The top graphs in Figure 12 display the original time-series, where true change points
were manually annotated. The time-series data in Figure 12(a) corresponds to a sequence
of “noise”, “speech”, “noise”, “speech”, and “noise”, whereas that in Figure 12(b) corre-
sponds to a sequence of actions “jog”, “stay”, “stair down”, “stay”, and “stair up”.

The bottom graphs in Figure 12 plot change scores obtained by each method. The
results show that the LSDD-based change score indicates the existence of change points
more clearly than the KLIEP-based approach. The superior performance of LSDD over
the KLIEP-based change score would be brought by its robustness against outliers (see
Section 4.1.2).

Finally, we compare the change-detection performance more systematically using the
receiver operating characteristic (ROC) curves (i.e., the false positive rate vs. the true
positive rate) and the area under the ROC curve (AUC) values. In addition to LSDD and
KLIEP, we also test the L2-distance estimated by KDEi and KDEj (see Section 4.1.1).
Moreover, in our comparison, we also include native change detection methods based on
autoregressive models (AR) (Takeuchi & Yamanishi, 2006), subspace identification (SI)
(Kawahara et al., 2007), singular spectrum transformation (SST) (Moskvina & Zhigl-
javsky, 2003), one-class support vector machine (SVM) (Desobry et al., 2005), kernel
Fisher discriminant analysis (KFD) (Harchaoui et al., 2009), and kernel change-point de-
tection (KCP) (Arlot et al., 2012). Tuning parameters included in these methods were
manually optimized.

We use 10 datasets taken from each of the CENSREC and HASC data collections.
Mean ROC curves are plotted in Figure 13 and AUC values are described in Table 1.
The experimental results show that LSDD tends to outperform other methods and is
comparable to state-of-the-art native change-detection methods.

5 Conclusions

In this paper, we proposed a method for directly estimating the difference between two
probability density functions without density estimation. The proposed method, called
the least-squares density-difference (LSDD), was derived within the framework of kernel
regularized least-squares estimation, and its solution can be computed analytically in a
computationally efficient and stable manner. Furthermore, LSDD is equipped with cross-
validation, and thus all tuning parameters such as the kernel width and the regularization
parameter can be systematically and objectively optimized. We showed the asymptotic
normality of LSDD in a parametric setup and derived a finite-sample error bound for
LSDD in a non-parametric setup. In both cases, LSDD was shown to achieve the optimal
convergence rates.

We also proposed an L2-distance estimator based on LSDD, which nicely cancels the
bias caused by regularization. The LSDD-based L2-distance estimator was experimen-
tally shown to be more accurate than differences of kernel density estimators and more
robust against outliers than a Kullback-Leibler divergence estimator. However, we also ex-
perimentally observed that cross-validation of LSDD is sometimes rather unstable when
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Figure 13: Mean ROC curves of unsupervised change detection.
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Table 1: AUC values of unsupervised change detection. The best method and comparable
ones in terms of mean AUC values by the t-test (Henkel, 1976) at the significance level
5% are indicated with boldface. “SE” stands for “Standard error”.

(a) CENSREC dataset

Data ID LSDD KDEi KDEj KLIEP AR SI SST SVM KFD KCP
1 .888 .737 .731 .437 .769 .739 .507 .604 .881 .917
2 .871 .803 .706 .618 .777 .736 .541 .612 .912 .879
3 .910 .753 .690 .744 .762 .821 .616 .886 .876 .743
4 .936 .823 .578 .683 .776 .816 .723 .871 .981 .826
5 .878 .712 .799 .667 .768 .701 .625 .843 .880 .945
6 .830 .732 .711 .696 .679 .727 .484 .781 .841 .947
7 .813 .727 .737 .513 .727 .733 .612 .779 .938 .968
8 .889 .841 .734 .691 .783 .775 .526 .698 .934 .935
9 .828 .739 .586 .609 .776 .770 .609 .819 .922 .980
10 .943 .687 .773 .692 .670 .747 .551 .835 .889 .984

Mean .879 .755 .705 .635 .749 .756 .580 .773 .905 .913
SE .014 .016 .023 .030 .013 .012 .023 .032 .013 .024

(b) HASC dataset

Data ID LSDD KDEi KDEj KLIEP AR SI SST SVM KFD KCP
1 .792 .823 .753 .650 .860 .690 .806 .800 .885 .874
2 .842 .665 .741 .712 .733 .800 .745 .725 .904 .826
3 .773 .605 .536 .708 .910 .899 .807 .932 .707 .641
4 .921 .839 .837 .587 .816 .735 .685 .751 .903 .759
5 .838 .849 .859 .565 .831 .823 .809 .840 .961 .725
6 .834 .755 .781 .676 .868 .740 .736 .838 .871 .800
7 .841 .763 .598 .657 .807 .759 .797 .829 .770 .532
8 .878 .833 .857 .581 .629 .704 .682 .800 .852 .661
9 .864 .850 .866 .693 .738 .744 .781 .790 .842 .697
10 .847 .663 .680 .554 .796 .725 .790 .850 .866 .787

Mean .843 .764 .751 .638 .799 .762 .764 .815 .856 .730
SE .013 .029 .036 .020 .026 .020 .016 .018 .023 .032
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the target density difference is zero (i.e., two distributions are equivalent). This can
potentially cause performance degradation in two-sample homogeneity testing because
estimation of zero density-difference is repeatedly executed when approximating the null
distribution in the permutation-test framework. Stabilizing cross-validation and improv-
ing the accuracy of density-difference estimation when the target density-difference is zero
is a remaining future work.

It is straightforward to extend the proposed LSDDmethod to the difference of weighted
densities

νp(x)− ν ′p′(x),

where ν and ν ′ are scalars. Also, LSDD can be easily extended to estimate the weighted
L2-distance: ∫ (

p(x)− p′(x)
)2
w(x)dx,

where w(x) > 0 is a weight function.
A related line of research to density-difference estimation is density-ratio estimation

(Sugiyama et al., 2012a), which directly estimates the ratio of probability densities without
separate density estimation (Qin, 1998; Huang et al., 2007; Bickel et al., 2007; Sugiyama
et al., 2008; Kanamori et al., 2009; Sugiyama et al., 2012b). Potential weaknesses of
density-ratio estimation are that density ratios can be unbounded even for simple cases
(Cortes et al., 2010) and their estimation may suffer from outliers (Basu et al., 1998;
Scott, 2001; Besbeas & Morgan, 2004).

To mitigate these weaknesses, the concept of relative density ratios was introduced
recently, which “flatten” the density ratio p(x)

p′(x)
as p(x)

βp(x)+(1−β)p′(x)
for 0 ≤ β < 1 (Yamada

et al., 2013). Even when the plain density ratio is unbounded, the relative density ratio
is always bounded by 1

β
for β > 0. Although estimation of relative density ratios as well

as approximation of relative divergences was demonstrated to be more reliable (Yamada
et al., 2013), there is no systematic method to choose the relativity parameter β, which
is a critical limitation in practice.

On the other hand, density-difference estimation is more advantageous than density-
ratio estimation in the senses that density differences are always bounded as long as
each density is bounded, their estimation is robust against outliers (Basu et al., 1998;
Scott, 2001; Besbeas & Morgan, 2004), and there exist no tuning parameters such as the
relativity parameter β. However, a potential weakness of density differences is that they
cannot be used for importance sampling (Sugiyama & Kawanabe, 2012) and conditional
probability estimation (Sugiyama et al., 2010b; Sugiyama, 2010), which are promising
usages of density-ratio estimation. Thus, further exploring usages of density-difference
estimation, particularly in the tasks that density-ratio estimation cannot be used for, is
a promising future work.

A simple application of density-difference estimation would be probabilistic pattern
recognition, because the sign of the density difference gives the Bayes-optimal decision
(Duda et al., 2001). Furthermore, in the context of pattern recognition with a reject
option, the density difference can be used for finding the optimal rejection threshold
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(Chow, 1970). In the future work, we will investigate the behavior of LSDD in probabilistic
pattern recognition theoretically and experimentally.

Density-difference estimation is a novel research paradigm in machine learning, and
we have proposed a simple but useful method for this emerging topic. Our future work
will develop more powerful algorithms for density-difference estimation. For example,
considering more general loss functions than the squared loss (Sugiyama et al., 2012b)
and incorporating dimension reduction (von Bünau et al., 2009; Sugiyama et al., 2010a;
Sugiyama et al., 2011; Yamada & Sugiyama, 2011) would be interesting directions to
pursue. Exploring a wide variety of real-world applications is also an important future
work.
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A Technical Details of Non-Parametric Convergence

Analysis in Section 2.3.2

First, we define the linear operators Pn, P, P
′
n, P

′, Qn, Q as

Pnf :=
1

n

n∑
i=1

f(xi), Pf :=

∫
Rd

f(x)p(x)dx,

P ′
nf :=

1

n

n∑
i=1

f(x′
i), P ′f :=

∫
Rd

f(x)p′(x)dx,

Qnf := Pnf − P ′
nf, Qf := Pf − P ′f.

Let Hγ be an RKHS endowed with the Gaussian kernel with width γ:

kγ(x,x
′) = exp

(
−∥x− x

′∥2

γ2

)
.

A density-difference estimator f̂ is obtained as

f̂ := argmin
f∈Hγ

[
∥f∥2L2(Rd) − 2Qnf + λ∥f∥2Hγ

]
.
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We assume the following conditions:

Assumption 1. The densities are bounded: There exists a constant M such that

∥p∥∞ ≤M and ∥p′∥∞ ≤M.

The density difference f = p− p′ is a member of Besov space with regularity α. That is,
f ∈ Bα

2,∞ where Bα
2,∞ is the Besov space with regularity α, and

∥f∥Bα
2,∞

:= ∥f∥L2(Rd) + sup
t>0

(t−αωr,L2(Rd)(f, t)) < c for r = ⌊α⌋+ 1,

where ⌊α⌋ denotes the largest integer less than or equal to α and ωr,L2(Rd) is the r-th
modulus of smoothness (see Eberts and Steinwart (2011) for the definitions).

Then we have the following theorem.

Theorem 2. Suppose Assumption 1 is satisfied. Then, for all ϵ > 0 and p ∈ (0, 1), there
exists a constant K > 0 depending on M, c, ϵ, p such that for all n ≥ 1, τ ≥ 1, and λ > 0,
the LSDD estimator f̂ in Hγ satisfies

∥f̂ − f∥2L2(Rd)+λ∥f̂∥
2
Hγ
≤ K

(
λγ−d+γ2α+

γ−(1−p)(1+ϵ)d

λpn
+
γ−

2(1−p)d
1+p

(1+ϵ+ 1−p
4

)

λ
3p−p2

1+p n
2

1+p

+
τ

n2λ
+
τ

n

)
,

with probability not less than 1− 4e−τ .

To prove this, we utilize the technique developed in Eberts and Steinwart (2011) for
a regression problem.

Proof. First, note that

∥f̂∥2L2(Rd) − 2Qnf̂ + ∥f∥2L2(Rd) + λ∥f̂∥2Hγ
≤ ∥f0∥2L2(Rd) − 2Qnf0 + ∥f∥2L2(Rd) + λ∥f0∥2Hγ

.

Therefore, we have

∥f̂ − f∥2L2(Rd) + λ∥f̂∥2Hγ

= ∥f̂∥2L2(Rd) − 2Qnf̂ + ∥f∥2L2(Rd) + 2(Qn −Q)f̂ + λ∥f̂∥2Hγ

≤ ∥f0∥2L2(Rd) − 2Qnf0 + ∥f∥2L2(Rd) + 2(Qn −Q)f̂ + λ∥f̂∥2Hγ

= ∥f0∥2L2(Rd) − 2Qf0 + ∥f∥2L2(Rd) + 2(Qn −Q)(f̂ − f0) + λ∥f̂∥2Hγ

= ∥f0 − f∥2L2(Rd) + 2(Qn −Q)(f̂ − f) + 2(Qn −Q)(f − f0) + λ∥f̂∥2Hγ
. (16)

Let

K(x) :=
r∑

j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2

exp

(
−2∥x∥2

j2γ2

)
,
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and f̃(x) := (γ
√
π)−

d
2 f . Using K and f̃ , we define

f0 := K ∗ f̃ :=

∫
Rd

f̃(y)K(x− y)dy,

i.e., f0 is the convolution of K and f̃ . Because of Lemma 2 in Eberts and Steinwart
(2011), we have f0 ∈ Hγ and

∥f0∥Hγ ≤ (2r − 1)∥f̃∥L2(Rd) (∵ Lemma 2 of Eberts and Steinwart (2011))

≤ (2r − 1)(γ
√
π)−

d
2∥f∥L2(Rd)

≤ (2r − 1)(γ
√
π)−

d
2 (∥p∥L2(Rd) + ∥p′∥L2(Rd))

≤ (2r − 1)(γ
√
π)−

d
2 2
√
M. (17)

Moreover, Lemma 3 in Eberts and Steinwart (2011) gives

∥f0∥∞ ≤ (2r − 1)∥f∥∞ ≤ (2r − 1)M, (18)

and Lemma 1 in Eberts and Steinwart (2011) yields that there exists a constant Cr,2 such
that

∥f0 − f∥2L2(Rd) ≤ Cr,2ω
2
r,L2(Rd)(f,

γ

2
) ≤ Cr,2c

2γ2α. (19)

Now, following a similar line to Theorem 3 in Eberts and Steinwart (2011), we can
show that, for all ϵ > 0 and p ∈ (0, 1), there exists a constant Cϵ,p such that

|(Pn − P )(f̂ − f)| ≤ f̂ − f.

To bound this, we derive the tail probability of

(Pn − P )

(
f̂ − f

∥f̂ − f∥2
L2(Rd)

+ λ∥f̂∥2Hγ
+ r

)
,

where r > 0 is a positive real number such that r > r∗ for

r∗ = min
f∈Hγ

∥f − f∥2L2(Rd) + λ∥f∥2Hγ
.

Let

gf,r =
f − f

∥f − f∥2
L2(Rd)

+ λ∥f∥2Hγ
+ r

for f ∈ Hγ and r > r∗. Then we have

∥gf,r∥∞ ≤
∥f∥∞ + ∥f∥∞

∥f − f∥2
L2(Rd)

+ λ∥f∥2Hγ
+ r
≤

∥f∥Hγ + ∥f∥∞
∥f − f∥2

L2(Rd)
+ λ∥f∥2Hγ

+ r

≤ 1

λ∥f∥Hγ + r/∥f∥Hγ

+
M

r
≤ 1

2
√
rλ

+
M

r
,
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and

Pg2f,r =
P (f − f)2

(∥f − f∥2
L2(Rd)

+ λ∥f∥2Hγ
+ r)2

≤
M∥f − f∥2

L2(Rd)

(∥f − f∥2
L2(Rd)

+ λ∥f∥2Hγ
+ r)2

≤ M

r
.

Here, let
Fr := {f ∈ Hγ | ∥f − f∥2L2(Rd) + λ∥f∥2Hγ

≤ r},
and we assume that there exists a function such that

E
[
sup
f∈Fr

|(Pn − P )(f − f)|
]
≤ φn(r),

where E denotes the expectation over all samples. Then, by the peeling device (see
Theorem 7.7 in Steinwart & Christmann, 2008), we have

E sup
f∈Hγ

|(Pn − P )gf,r| ≤
8φ(r)

r
.

Therefore, by Talagrand’s concentration inequality, we have

Pr

[
sup
f∈Hγ

|(Pn − P )gf,r| <
10φn(r)

r
+

√
2Mτ

nr
+

14τ

3n

(
1

2
√
rλ

+
M

r

)]
≥ 1− e−τ , (20)

where Pr[·] denotes the probability of an event.
From here on, we give an upper bound of φn. The RKHS Hγ can be embedded in

arbitrary Sobolev space Wm(Rd). Indeed, by the proof of Theorem 3.1 in Steinwart and
Scovel (2007), we have

∥f∥Wm(Rd) ≤ Cmγ
−m

2
+ d

4∥f∥Hγ

for all f ∈ Hγ. Moreover, the theories of interpolation spaces give that, for all f ∈
Wm(Rd), the supremum norm of f can be bounded as

∥f∥∞ ≤ C ′
m∥f∥

1− d
2m

L2(Rd)
∥f∥

d
2m

Wm(Rd)
,

if d < 2m. Here we set m = d
2p
. Then we have

∥f∥∞ ≤ C ′′
p∥f∥

1−p
L2(Rd)

∥f∥pHγ
γ−

d(1−p)
4 .

Now, because Fr ⊂ (r/λ)1/2BHγ and

P (f − f)2 ≤M∥f − f∥2L2(Rd) ≤Mr for f ∈ Fr

hold from Theorem 7.16 and Theorem 7.34 in Steinwart and Christmann (2008), we can
take

φn(r) = max

{
C1,p,ϵγ

− (1−p)(1+ϵ)d
2

( r
λ

) p
2
(Mr)

1−p
2 n−1/2,

C2,p,ϵγ
− (1−p)(1+ϵ)d

1+p

( r
λ

) p
1+p

[( r
λ

) p
2
γ−

d(1−p)
4 r

1−p
2

] 1−p
1+p

n−1/(1+p)

}
,
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where ϵ > 0 and p ∈ (0, 1) are arbitrary and C1,p,ϵ, C2,p,ϵ are constants depending on p, ϵ.
In the same way, we can also obtain a bound of supf∈Hγ

|(P ′
n − P ′)gf,r|.

If we set r to satisfy

1

8
≥ 10φn(r)

r
+

√
2Mτ

nr
+

14τ

3n

(
1

2
√
rλ

+
M

r

)
, (21)

then we have

|(Qn −Q)(f̂ − f)| ≤
1

4

(
r + ∥f̂ − f∥2L2(Rd) + λ∥f̂∥Hγ

)
(22)

with probability 1− 2e−τ . To satisfy Eq.(21), it suffices to set

r = C

(
γ−(1−p)(1+ϵ)d

λpn
+
γ−

2(1−p)d
1+p

(1+ϵ+ 1−p
4

)

λ
3p−p2

1+p n
2

1+p

+
τ

n2λ
+
τ

n

)
, (23)

where C is a sufficiently large constant depending on M, ϵ, p.
Finally, we bound the term (Qn −Q)(f0 − f). By Bernstein’s inequality, we have

|(Pn − P )(f0 − f)| ≤ C

(
∥f − f0∥L2(P )

√
τ

n
+

2rMτ

n

)
≤ C

(√
2M∥f − f0∥L2(Rd)

√
τ

n
+

2rMτ

n

)
≤ C

(
∥f − f0∥2L2(Rd) +

2Mτ

n
+

2rMτ

n

)
, (24)

with probability 1 − e−τ , where C is a universal constant. In a similar way, we can also
obtain

|(P ′
n − P ′)(f0 − f)| ≤ C

(
∥f − f0∥2L2(Rd) +

2Mτ

n
+

2rMτ

n

)
.

Combining these inequalities, we have

|(Qn −Q)(f0 − f)| ≤ C

(
∥f − f0∥2L2(Rd) +

2rMτ

n

)
, (25)

with probability 1− 2e−τ , where C is a universal constant.
Substituting Eqs.(22) and (25) into Eq.(16), we have

∥f̂ − f∥2L2(Rd) + λ∥f̂∥2Hγ

≤ 2

{
∥f0 − f∥2L2(Rd) + C

(
∥f − f0∥2L2(Rd) +

2rMτ

n

)
+ r + λ∥f0∥Hγ

}
,

with probability 1− 4e−τ . Moreover, by Eqs.(19) and (17), the right-hand side is further
bounded by

∥f̂ − f∥2L2(Rd) + λ∥f̂∥2Hγ
≤ C

{
γ2α + r + λγ−d +

1 + τ

n

}
,
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Finally, substituting Eq.(23) into the right-hand side, we have

∥f̂ − f∥2L2(Rd) + λ∥f̂∥2Hγ

≤ C

{
γ2α +

γ−(1−p)(1+ϵ)d

λpn
+
γ−

2(1−p)d
1+p

(1+ϵ+ 1−p
4

)

λ
3p−p2

1+p n
2

1+p

+ λγ−d +
τ

λn2
+
τ

n

}

with probability 1− 4e−τ for τ ≥ 1. This gives the assertion.

If we set
λ = n− 2α+d

(2α+d)(1+p)+(ϵ−p+ϵp) , γ = n− 1
(2α+d)(1+p)+(ϵ−p+ϵp) ,

and take ϵ and p sufficiently small, then we immediately have the following corollary.

Corollary 1. Suppose Assumption 1 is satisfied. Then, for all ρ, ρ′ > 0, there exists a
constant K > 0 depending on M, c, ρ, and ρ′ such that, for all n ≥ 1 and τ ≥ 1, the
density-difference estimator f̂ with appropriate choice of γ and λ satisfies

∥f̂ − f∥2L2(Rd) + λ∥f̂∥2Hγ
≤ K

(
n− 2α

2α+d
+ρ +

τ

n1−ρ′

)
with probability not less than 1− 4e−τ .

Note that n− 2α
2α+d is the optimal learning rate to estimate a function in Bα

2,∞ (Eberts
& Steinwart, 2011). Therefore, the density-difference estimator with a Gaussian kernel
achieves the optimal learning rate by appropriately choosing the regularization parameter
and the Gaussian width. Because the learning rate depends on α, the LSDD estimator
has adaptivity to the smoothness of the true function.

Our analysis heavily relies on the techniques developed in Eberts and Steinwart (2011)
for a regression problem. The main difference is that the analysis in their paper involves
a clipping procedure, which stems from the fact that the analyzed estimator requires an
empirical approximation of the expectation of the square term. The Lipschitz continuity of
the square function f 7→ f 2 is utilized to investigate this term, and the clipping procedure
is used to ensure the Lipschitz continuity. On the other hand, in the current paper, we
can exactly compute ∥f∥2

L2(Rd)
so that we do not need the Lipschitz continuity.

B Derivation of Eq.(13)

When λ (≥ 0) is small, (H + λIb)
−1 can be expanded as

(H + λIb)
−1 =H−1 − λH−2 + op(λ),
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where op denotes the probabilistic order. Then Eq.(12) can be expressed as

βĥ
⊤
θ̂ + (1− β)θ̂

⊤
Hθ̂

= βĥ
⊤
(H + λIb)

−1 ĥ+ (1− β)ĥ
⊤
(H + λIb)

−1H (H + λIb)
−1 ĥ

= βĥ
⊤
H−1ĥ− λβĥ

⊤
H−2ĥ

+ (1− β)ĥ
⊤
H−1ĥ− 2λ(1− β)ĥ

⊤
H−2ĥ+ op(λ)

= ĥ
⊤
H−1ĥ− λ(2− β)ĥ

⊤
H−2ĥ+ op(λ),

which concludes the proof.

C Derivation of Eq.(14)

Because E[ĥ] = h, we have

E[ĥ
⊤
H−1ĥ− h⊤H−1h] = E[(ĥ− h)⊤H−1(ĥ− h)]

= tr
(
H−1E[(ĥ− h)(ĥ− h)⊤]

)
= tr

(
H−1

(
1

n
V p[ψ] +

1

n′V p′ [ψ]

))
,

which concludes the proof.
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