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Abstract

We address the problem of estimating the difference between two probability den-
sities. A naive approach is a two-step procedure that first estimates two densities
separately and then computes their difference. However, such a two-step procedure
does not necessarily work well because the first step is performed without regard
to the second step and thus a small error in the first stage can cause a big error in
the second stage. Recently, a single-shot method called the least-squares density-
difference (LSDD) estimator has been proposed. LSDD directly estimates the den-
sity difference without separately estimating two densities, and it was demonstrated
to outperform the two-step approach. In this paper, we propose a variation of LSDD
called the constrained least-squares density-difference (CLSDD) estimator, and the-
oretically prove that CLSDD improves the accuracy of density difference estimation
for correctly specified parametric models. The usefulness of the proposed method
is also demonstrated experimentally.

Keywords
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1 Introduction

We address the problem of estimating the difference between two probability densities.
A density-difference estimator is useful in solving various machine learning tasks such as
class-balance estimation under class-prior change [6], image segmentation and registration
[13, 2], target object detection and recognition [9, 22], feature selection and extraction
[20, 19], and change-point detection in time series [11, 14, 21].

A naive approach to density-difference estimation is a two-step procedure of first es-
timating two densities separately and then computing their difference. However, such a
two-step procedure does not necessarily work well because the first step is performed with-
out regard to the second step and thus a small error incurred in the first stage can cause
a big error in the second stage. Recently, a single-shot method called the least-squares
density-difference (LSDD) estimator has been proposed [18]. LSDD directly estimates the
density difference without separately estimating two densities, and it was demonstrated
to outperform the two-step approach.

In this paper, we propose a variation of LSDD called the constrained least-squares
density-difference (CLSDD) estimator, and theoretically prove that CLSDD improves the
accuracy of density difference estimation for correctly specified parametric models. The
usefulness of the proposed method is also demonstrated experimentally.

The remainder of this paper is structured as follows. In Section 2, we formulate the
problem of density-difference estimation and review the original LSDD method. In Sec-
tion 3, we describe our proposed CLSDD method, and theoretically prove its superiority
for correctly specified parametric models. In Section 4, we apply CLSDD to approximating
the L2-distance between two probability densities and theoretically prove its superiority
for correctly specified parametric models. In Section 5, the usefulness of the proposed
CLSDD method is demonstrated experimentally. Finally, we conclude in Section 6.

2 Density-Difference Estimation

In this section, we formulate the problem of density-difference estimation and review the
original LSDD method [18].

2.1 Problem Formulation

Suppose that we are given two sets of independent and identically distributed samples
X := {xi}ni=1 and X ′ := {x′

i′}n
′

i′=1 drawn from probability distributions on Rd with densi-
ties p(x) and p′(x), respectively:

X := {xi}ni=1
i.i.d∼ p(x),

X ′ := {x′
i′}n

′

i′=1
i.i.d∼ p′(x).
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Our goal is to estimate the difference f(x) between p(x) and p′(x) from the samples X
and X ′:

f(x) := p(x)− p′(x).

2.2 Least-Squares Density-Difference Estimation

In LSDD, a density-difference model g(x) is fitted to the true density-difference function
f(x) under the squared loss:

argmin
g

∫ (
g(x)− f(x)

)2
dx.

We use the following linear-in-parameter model as g(x):

g(x) =
b∑

l=1

θlψl(x) = θ
⊤ψ(x), (1)

where b denotes the number of basis functions,

ψ(x) = (ψ1(x), . . . , ψb(x))
⊤

is a b-dimensional linearly independent basis function vector,

θ = (θ1, . . . , θb)
⊤

is a b-dimensional parameter vector, and ⊤ denotes the transpose. In practice, we use the
following Gaussian kernel model as g(x):

g(x) =
n+n′∑
l=1

θl exp

(
−∥x− cl∥2

2σ2

)
, (2)

where

(c1, . . . , cn, cn+1, . . . , cn+n′) := (x1, . . .xn,x
′
1, . . . ,x

′
n′)

are Gaussian kernel centers. If n + n′ is large, we may only use a subset of
x1, . . .xn,x

′
1, . . . ,x

′
n′ as Gaussian kernel centers.

For the model (1), the optimal parameter θ∗ is given by

θ∗ := argmin
θ

∫ (
g(x)− f(x)

)2
dx

= argmin
θ

[∫
g(x)2dx− 2

∫
g(x)f(x)dx

]
= argmin

θ

[
θ⊤Hθ − 2θ⊤h

]
=H−1h,
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where H is the b× b matrix and h is the b-dimensional vector defined as

H :=

∫
ψ(x)ψ(x)⊤dx,

h :=

∫
ψ(x)p(x)dx−

∫
ψ(x′)p′(x′)dx′.

Note that, for the Gaussian kernel model (2), the integral in H can be computed analyt-
ically as

Hl,l′ =

∫
exp

(
−∥x− cl∥2

2σ2

)
exp

(
−∥x− cl′∥2

2σ2

)
dx

= (πσ2)d/2 exp

(
−∥cl − cl′∥2

4σ2

)
,

where d denotes the dimensionality of x. Replacing the expectations in h by empirical
estimators and adding an ℓ2-regularizer to the objective function, we arrive at the following
optimization problem:

θ̂ := argmin
θ

[
θ⊤Hθ − 2θ⊤ĥ+ λθ⊤θ

]
,

where λ (> 0) is the regularization parameter and ĥ is the b-dimensional vector defined
as

ĥ =
1

n

n∑
i=1

ψ(xi)−
1

n′

n′∑
i′=1

ψ(x′
i′).

Taking the derivative of the above objective function and set it to zero, we can obtain the
solution θ̂ analytically as

θ̂ =H−1
λ ĥ,

where

Hλ =H + λIb.

Ib denotes the b-dimensional identity matrix. Finally, a density-difference estimator f̂(x)
is given as

f̂(x) = θ̂⊤ψ(x).

This is called the least-squares density-difference (LSDD) estimator.
The LSDD estimator possesses superior theoretical properties: It has asymptotic nor-

mality with asymptotic order
√

1/n+ 1/n′, which is known to be the optimal convergence
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rate in the parametric setup. Also, a non-parametric LSDD estimator achieves the optimal
convergence rate [18].

The practical performance of LSDD depends on the choice of models (i.e., the kernel
width σ and the regularization parameter λ). The model can be optimized by cross-
validation (CV). More specifically, we first divide the samples X = {xi}ni=1 and X ′ =
{x′

i′}n
′

i′=1 into T disjoint subsets {Xt}Tt=1 and {X ′
t}Tt=1, respectively. Then we obtain a

density-difference estimate f̂t(x) from X \Xt and X ′ \X ′
t (i.e., all samples without Xt and

X ′
t ), and compute its hold-out error for Xt and X ′

t as

CVt :=

∫
f̂t(x)

2dx− 2

|Xt|
∑
x∈Xt

f̂t(x) +
2

|X ′
t |
∑
x′∈X ′

t

f̂t(x
′),

where |X | denotes the number of elements in the set X . We repeat this hold-out validation
procedure for t = 1, . . . , T , and compute the average hold-out error as

CV :=
1

T

T∑
t=1

CVt.

Finally, we choose the model that minimizes CV.

3 Constrained Least-Squares Density-Difference Es-

timation

In this section, we propose a variation of LSDD called the constrained least-squares
density-difference (CLSDD) estimator, and theoretically prove that CLSDD improves
the accuracy of density difference estimation for correctly specified parametric models.

3.1 Derivation of CLSDD

By definition, the true density-difference function f(x) satisfies∫
f(x)dx =

∫
p(x)dx−

∫
p′(x)dx = 1− 1 = 0.

Thus, it would be preferable that our model g(x) satisfies the following constraint:∫
g(x)dx = 0.

For the linear-in-parameter model (1), this constraint is expressed as

θ⊤ψ = 0,
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where ψ is the b-dimensional vector defined by

ψ :=

∫
ψ(x)dx.

For the Gaussian kernel model (2), this constraint can be further simplified as

θ⊤1b = 0,

where 1b denotes the b-dimensional vector with all ones, because∫
exp

(
−∥x− cl∥2

2σ2

)
dx = (2πσ2)d/2.

Based on the above constraint, the CLSDD optimization problem is defined as

θ̃ := argmin
θ

[
θ⊤Hθ − 2θ⊤ĥ+ λθ⊤θ

]
subject to θ⊤ψ = 0.

The Karush-Kuhn-Tucker (KKT) optimality conditions [4] for the CLSDD optimization
problem are given as [

2Hλ ψ

ψ
⊤

0

][
θ̃
ν

]
=

[
2ĥ
0

]
,

where ν ∈ R is a Lagrangian multiplier. Using a block-matrix inversion formula [1], we
have [

2Hλ ψ

ψ
⊤

0

]−1

=

1
2
H−1

λ − 1
2
Dλ

H−1
λ ψ

ψ
⊤
H−1

λ ψ

ψ
⊤
H−1

λ

ψ
⊤
H−1

λ ψ
−1

2
ψ

⊤
H−1

λ ψ

 ,
where

Dλ :=
H−1

λ ψψ
⊤
H−1

λ

ψ
⊤
H−1

λ ψ
.

Then, the CLSDD solution θ̃ is given as

θ̃ = (H−1
λ −Dλ)ĥ = θ̂ −Dλĥ.

Finally, a density-difference estimator f̃(x) is given as

f̃(x) = θ̃⊤ψ(x).



Constrained Least-Squares Density-Difference Estimation 7

3.2 Parametric Convergence Analysis of CLSDD

We consider a linear parametric setup where basis functions in our density-difference
model (1) are fixed and correctly specified, i.e., there exists θ∗ ∈ Rb such that

f(x) = θ∗⊤ψ(x).

Let Vp be the variance-covariance matrix of ψ(x) under the probability density p(x):

Vp :=

∫ (
ψ(x)−ψp

)(
ψ(x)−ψp

)⊤
p(x)dx,

where ψp denotes the expectation of ψ(x) under the probability density p(x):

ψp :=

∫
ψ(x)p(x)dx.

Suppose that n
n+n′ converges to η ∈ [0, 1], and let λ = o(

√
1/n+ 1/n′). Then the central

limit theorem [15] asserts that
√

nn′

n+n′ (θ̃−θ∗) converges in law to the normal distribution

with mean 0b and variance-covariance matrix

(H−1 −D)Bη(H
−1 −D),

where 0b denotes the b-dimensional vector with all zeros and

D :=
H−1ψψ

⊤
H−1

ψ
⊤
H−1ψ

,

Bη := (1− η)Vp + ηVp′ .

Note that H−1 −D is positive semi-definite because

H−1 −D =H−1/2PH−1/2,

where P denotes the orthogonal projection matrix onto the orthogonal complement of
H−1/2ψ. This result implies that the CLSDD estimator has asymptotic normality with
asymptotic order

√
1/n+ 1/n′, which is the optimal convergence rate in the parametric

setup.
In the same setup, the original LSDD estimator θ̂ possesses asymptotic normality with

variance-covariance matrix H−1BηH
−1 [18]. Because of the positive semi-definiteness of

H−1 −D, we can confirm that CLSDD generally possesses smaller asymptotic variance
than LSDD. This immediately implies

E
∥∥∥θ̃ − θ∗

∥∥∥2 ≤ E
∥∥∥θ̂ − θ∗

∥∥∥2 ,
if terms with op(

√
1/n+ 1/n′) coming from the central limit theorem are ignored, where

E denotes the expectation over all samples and op denotes the asymptotic order in proba-
bility, Thus, CLSDD is provably more accurate than LSDD for correctly specified models.
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4 L2-Distance Estimation by CLSDD

In this section, we consider the problem of approximating the L2-distance between p(x)
and p′(x),

L2(p, p′) :=

∫ (
p(x)− p′(x)

)2
dx, (3)

from samples X := {xi}ni=1 and X ′ := {x′
i′}n

′

i′=1.
Let us consider the following equivalent expression of Eq.(3):

L2(p, p′) =

∫
f(x)p(x)dx−

∫
f(x′)p′(x′)dx′.

If we replace f(x) with the CLSDD estimator f̃(x) and approximate the expectations by
empirical averages, we obtain the following L2-distance estimator:

L̃2(X ,X ′) := θ̃⊤ĥ = ĥ⊤(H−1
λ −Dλ)ĥ. (4)

On the other hand, its LSDD counterpart is given by

L̂2(X ,X ′) := θ̂⊤ĥ = ĥ⊤H−1
λ ĥ.

Suppose that our linear-in-parameter model (1) is correctly specified, i.e., there exist
θ∗ ∈ Rb such that

f(x) = θ∗⊤ψ(x).

Then the true L2-distance is expressed as

L2(p, p′) = h⊤(H−1 −D)h = h⊤H−1h,

where the second equality follows from∫
f(x)dx = θ∗⊤ψ = 0.

If the regularization parameter is set at λ = o(1/n+ 1/n′) and terms with op(1/n +
1/n′) are ignored, we have

E[L̃2(X ,X ′)] = L2(p, p′) + tr
(
(H−1 −D)C

)
,

E[L̂2(X ,X ′)] = L2(p, p′) + tr
(
H−1C

)
,

where

C :=
1

n
Vp +

1

n′Vp′ .
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From the positive semi-definiteness of H−1 −D, we have

tr
(
(H−1 −D)C

)
≤ tr

(
H−1C

)
.

This means that, for correctly specified models, the L2-distance estimator L̃2(X ,X ′) based

on CLSDD possesses smaller bias than its LSDD counterpart L̂2(X ,X ′).
Note that, in the original LSDD paper [18], a slightly more sophisticated L2-distance

estimator was proposed:

2θ̂⊤ĥ− θ̂⊤Hθ̂, (5)

which was shown to possess smaller bias than the naive approximator θ̂⊤ĥ. However, its
improvement is of order O(λ), which is ignorable in the current context.

5 Experiments

In this section, we experimentally evaluate the performance of CLSDD and LSDD. We
focus on using the Gaussian kernel model (2) here.

5.1 Illustration

First, we numerically illustrate the behavior of CLSDD and LSDD using one-dimensional
artificial data. Let

p(x) = N (x;µ1, σ
2
1),

p′(x) = N (x;µ2, σ
2
2),

where N (x;µ, σ2) denotes the normal density with mean µ and variance σ2 with respect
to x. We draw n = n′ = 200 samples from p(x) and p′(x).

Figure 1 depicts the density-difference estimation results for µ1 = 0, µ2 = 1.4, and
σ1 = σ2 = 1. This shows that CLSDD gives a slightly better estimate of the density
difference f(x) than LSDD.

Next, we investigate the squared difference between true and estimated density dif-
ferences. Figure 2 depicts means and standard errors of squared differences between the
true density difference and LSDD/CLSDD estimators as functions of

µ2 = −1,−0.9,−0.8, . . . , 1

over 1000 runs. The results show that CLSDD tends to be more accurate than LSDD.
Now, we compare the CLSDD-based L2-distance estimator given by Eq.(4) with the

LSDD-based estimator given by Eq.(5). Figure 3 depicts means and standard errors of
estimated L2-distances over 1000 runs for µ1 = 0, σ1 = 3, and σ2 = 5 as functions of mean

µ2 = −1,−0.9,−0.8, . . . , 1.

This shows that CLSDD tends to outperform LSDD.
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Figure 1: Estimation of density difference for µ1 = 0, µ2 = 1.4, and σ1 = σ2 = 1. Left:
Histograms of samples drawn from p(x) (top) and p′(x) (bottom). Right: True densities
p(x) and p′(x), true density difference f(x) = p(x) − p′(x), and its estimates by LSDD
and CLSDD.
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(b) µ1 = 0, σ1 = 3, and σ2 = 5

Figure 2: Means and standard errors of density-difference squared errors for LSDD and
CLSDD over 1000 runs as function of mean µ2.

5.2 Semi-Supervised Class-Balance Estimation

Next, we apply the CLSDD-based L2-distance estimator to semi-supervised class-balance
estimation under class-prior change.

In real-world classification problems, the class balance in the training dataset is often
different from that of the test dataset. Such a situation is called class-prior change [6].
Because most supervised learning algorithms assume that training data and test data
follow the same probability distribution [10, 3], class-prior change can cause significant
estimation bias. If the test class balance is known, the estimation bias caused by class-
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Figure 3: Means and standard errors of true and estimated L2-distances by LSDD and
CLSDD over 1000 runs for µ1 = 0, σ1 = 3, and σ2 = 5 as function of mean µ2.

prior change can be corrected by instance re-weighting or resampling [8, 12]. However,
the test class balance is often unknown in practice.

Here, we consider a binary classification problem under a semi-supervised learning
setup, where unlabeled test samples are given in addition to labeled training samples [5].
Let x be a pattern to be classified, and let y ∈ {+1,−1} be its class label. We then learn
the test class balance by matching a mixture of class-wise training input densities,

πptrain(x|y = +1) + (1− π)ptrain(x|y = −1),

with the test input density ptest(x) [17, 6]. Here, π ∈ [0, 1] is a class-mixing coefficient that
is learned from data. For this distribution matching, we use the L2-distances estimated
by CLSDD and LSDD.

We use UCI binary-classification benchmark datasets1, where we randomly select 10
labeled training samples from each of the two classes and 50 unlabeled test samples
following true class-prior

π∗ = 0.1, 0.2, . . . , 0.9.

The left graphs in Figure 4 plot means and standard errors of squared differences be-
tween true and estimated class balances over 1000 runs. These graphs show that CLSDD
tends to produce better class-balance estimates. The right graphs in Figure 4 plot means
and standard errors of misclassification rates by regularized least-squares classifiers [16]
with class-balance weighting over 1000 runs. The graphs show that better class-balance
estimates obtained by CLSDD are translated into lower classification errors.

5.3 Two-Sample Test

Finally, we apply the CLSDD-based L2-distance estimator to distribution comparison by
two-sample homogeneity testing.

1‘http://archive.ics.uci.edu/ml’.
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Figure 4: Class-balance estimation errors (left) and misclassification rates (right).
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The goal of two-sample homogeneity test is to determine whether two sets of samples
X = {xi}ni=1 and X ′ = {x′

i′}n
′

i′=1, are drawn from the same distribution. In other words,
we want to test the null hypothesis H0 : P = P ′ against the alternative hypothesis
H1 : P ̸= P ′. Here we use the CLSDD-based and LSDD-based L2-distance estimators
to test the homogeneity of distributions in the framework of permutation testing [7]. We
again use UCI binary-classification benchmark datasets for experiments.

We first investigate whether the tests can correctly accept the null hypothesis (i.e., X
and X ′ follow the same distribution). For each dataset, we randomly split all the positive
training samples into two disjoint sets, X and X ′ with |X | = |X ′|. Figure 5(a) shows the
rate of accepting the correct null hypothesis under the significance level 0.05, as functions
of the relative sample size

η = 0.2, 0.4, . . . , 1,

i.e., we only use η|X | and η|X ′| samples for hypothesis testing. From the results, we can
confirm that both the LSDD-based and CLSDD-based methods accept the correct null
hypothesis with the pre-specified significance level approximately.

Next, we replace positive samples in the set X ′ by randomly chosen negative training
samples, yielding P ̸= P ′. Figure 5(b) shows the rate of accepting the incorrect null
hypothesis under the significance level 0.05, as functions of the relative sample size η.
The results indicate that CLSDD-based method tends to have slightly lower acceptance
rates than the LSDD-based method, meaning that the CLSDD-based method tends to
have a slightly higher testing power the LSDD-based method.

6 Conclusion

In this paper, we proposed a variation of the least-squares density-difference (LSDD)
estimator for directly estimating the difference between two probability density functions
without density estimation. The proposed method, called the constrained least-squares
density-difference (CLSDD) estimator, provably improves the estimation accuracy of the
density difference and L2-distance for correctly specified parametric models. We have
also experimentally illustrated the usefulness of CLSDD in semi-supervised class-balance
estimation and two-sample homogeneity testing.
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Figure 5: The rate of accepting the null hypothesis (i.e., P = P ′) under a significance
level of 0.05. η indicates the relative sample size.
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