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Abstract—We consider the unsupervised learning problem of
assigning labels to unlabeled data. A naive approach is to use
clustering methods, but this works well only when data is
properly clustered and each cluster corresponds to an underlying
class. In this paper, we first show that this unsupervised labeling
problem in balanced binary cases can be solved if two unlabeled
datasets having different class balances are available. More
specifically, estimation of the sign of the difference between
probability densities of two unlabeled datasets gives the solution.
We then introduce a new method to directly estimate the sign
of the density difference without density estimation. Finally,
we demonstrate the usefulness of the proposed method against
several clustering methods on various toy problems and real-
world datasets.

Index Terms—clustering; class-balance change.

I. INTRODUCTION

Gathering labeled data is expensive and time consuming

in many practical machine learning problems, and therefore

class labels are often absent. In this paper, we consider the

problem of labeling, which is aimed at giving a label to each

sample. Labeling is similar to classification, but it is slightly

simpler than classification because classes do not have to be

specified. That is, labeling just tries to split unlabeled samples

into disjoint subsets, and class labels such as male/female or

positive/negative are not assigned to samples.

A naive approach to the labeling problem is to use a

clustering technique which is aimed at assigning a label to

each sample of the dataset to divide the dataset into disjoint

clusters. The tacit assumption in clustering is that the clusters

correspond to the underlying classes. However, this assump-

tion is often violated in practical datasets, for example, when

clusters are not well separated or a dataset exhibits within-

class multimodality. An example of the labeling problem is

illustrated in Figure 1. Figure 1(a) shows the samples drawn

from a mixture of two normal distributions (differing only in

the mean). Because the two clusters are highly overlapping,

it may not be possible to properly label them by a clustering

method.

In this paper we show that if one more dataset with a

different class balance is available (Figure 1(b)), the labeling

problem can be solved (Figures 1(c) and 1(d)). More specifi-

cally, we show that a labeling for the samples can be obtained

by estimating the sign of the difference between probability

densities of two unlabeled datasets. Thus, now our challenge

is to estimate the sign of the density difference as accurate as

possible.

A naive way to estimate the sign of the density difference

is to first separately estimate two densities from two sets of

samples and then take the sign of their difference to obtain

a labeling. However, this naive procedure violates Vapnik’s

principle [1]:

If you possess a restricted amount of information

for solving some problem, try to solve the problem

directly and never solve a more general problem as

an intermediate step. It is possible that the available

information is sufficient for a direct solution but is

insufficient for solving a more general intermediate

problem.

This principle was successfully used in the development of

support vector machines (SVMs): Rather than modeling two

classes of samples, SVM directly learns a decision boundary

that is sufficient for performing pattern recognition.

In the current context, estimating two densities is more

general than labeling samples. Thus, the above naive scheme

may be improved by estimating the density difference directly

and then taking its sign to obtain the class labels. Recently,

a method was introduced to directly estimate the density

difference, called the least-squares density difference (LSDD)

estimator [2]. Thus, the use of LSDD for labeling is expected

to improve the performance.

However, the LSDD-based procedure is still indirect; di-

rectly estimating the sign of the density difference would be

the most suitable approach to labeling. In this paper, we show

that the sign of the density difference can be directly estimated

by lower-bounding the L1-distance between probability densi-

ties. Based on this, we give a practical algorithm for labeling

and illustrate its usefulness through experiments on various

real-world datasets.

II. PROBLEM FORMULATION AND FUNDAMENTAL

APPROACHES

In this section, we formulate the problem of labeling, give

our fundamental strategy, and consider two naive approaches.
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Fig. 1: Illustrative example of labeling samples from unbalanced datasets. Figures 1a and 1b show the samples of the two

datasets which differ only by class balance (the datasets are denoted as Xp and Xp′ ). The discriminant estimated by the method

that we propose in this paper is plotted by the blue solid line and the optimal discriminant is plotted by the black dashed line.

The true underlying class labels (which are unknown) are illustrated with red and black points.

A. Problem Formulation

Suppose that there are two joint probability distributions on

x ∈ R
d and y ∈ {1,−1} with densities p(x, y) and p′(x, y),

which are different only in class balances:

p(y) 6= p′(y) but p(x|y) = p′(x|y). (1)

Here p(y) and p′(y) denote the marginal probabilities of y
and p(x|y) and p′(x|y) denotes the conditional densities of x

given y, respectively. From these distributions, we are given

two sets of unlabeled samples:

Xp = {xi}ni=1

i.i.d.∼ p(x) and Xp′ = {x′

j}n
′

j=1

i.i.d.∼ p′(x),

where p(x) and p′(x) denote the marginal densities of x.

The goal of labeling is to obtain a labeling for the two sets

of samples, Xp and Xp′ , that corresponds to the underlying

class labels {yi}ni=1 and {y′j}n
′

j=1. However, different from

classification, we do not obtain correct class labels, but we

obtain correct class separation up to label commutation.

B. Fundamental strategy

Here we show that, for the case where the class priors are

equal, we can obtain a labeling for samples in Xp and Xp′ .

We may write the class-posterior probability for the equal

prior case as

q(y = 1|x) = p(x|y)q(y)
q(x)

,

where q(y = 1) = q(y = −1) = 1

2
. A class label can then be

assigned to the most likely class by

d(x) = sign [q(y = 1|x)− q(y = −1|x)] ,
where d(x) denotes the criterion for labeling. Below we

explain how d(x) can be estimated from two sets of unlabeled

samples Xp and Xp′ .

We can write the difference between class-posteriors as

q(y = 1|x)− q(y = −1|x)

=
p(x|y = 1) 1

2

q(x)
− p(x|y = −1) 1

2

q(x)

=
1

2q(x)
(p(x|y = 1)− p(x|y = −1)) .

Since 1/(2q(x)) is always positive, the criterion becomes

d(x) = sgn [p(x|y = 1)− p(x|y = −1)] .

Now the difference between marginal densities can be written

as

p(x)− p′(x)

= p(y = 1)p(x|y = 1) + [1− p(y = 1)] p(x|y = −1)
− p′(y = 1)p(x|y = 1)− [1− p′(y = 1)] p(x|y = −1)

= [p(y = 1)− p′(y = 1)] [p(x|y = 1)− p(x|y = −1)] .

Therefore, the criterion can be expressed as

d(x) = A sgn [p(x)− p′(x)] ,

where A = sgn [p(y = 1)− p′(y = 1)].
This expression means that, if we know the class proportions

in Xp and Xp′ , we can compute A and thus class labels can be

obtained only from unlabeled samples. In practice, however,

we may not know the class proportions and thus we can

only label unlabeled samples (i.e., split unlabeled samples into

disjoint subsets which correspond to the original class labels).

Thus, now our challenge is to obtain a good estimator of

the sign of density difference, sign [p(x)− p′(x)].

C. Kernel Density Estimation

A naive approach to estimating the sign of density-

difference is to use kernel density estimation (KDE) [3]. For

Gaussian kernels, the KDE solutions are given by

p̂(x) ∝
n∑

i=1

exp

(
−‖x− xi‖2

2σ2

)
,

p̂′(x) ∝
n′∑

j=1

exp

(
−
‖x− x′

j‖2
2σ′2

)
.

The Gaussian widths σ and σ′ may be determined based

on least-squares cross-validation [4]. Finally, a labeling is

obtained as

y = sign [p̂(x)− p̂′(x)]. (2)



D. Direct Estimation of the Density Difference

KDE is a nice density estimator, but it is not necessarily

suitable in density-difference estimation, because small es-

timation error incurred in each density estimate can cause

a big error in the final density-difference estimate. More

intuitively, good density estimators tend to be smooth and

thus a density-difference estimator obtained from such smooth

density estimators tends to be over-smoothed [5], [6].

The density difference can be estimated in a single shot

using the least-squares density difference (LSDD) approach

[2]. In this approach, we directly fit a model g(x) to the

density difference under the square loss:

ĝ = argmin
g

1

2

∫
(g(x)− (p(x)− p′(x)))

2
dx,

which can be efficiently obtained for a kernel density-

difference model. Finally, a labeling is obtained as

y = sign[ĝ(x)].

III. DIRECT ESTIMATION OF THE SIGN OF THE DENSITY

DIFFERENCE

We expect that an improved solution can be obtained by

LSDD over KDEs due to more direct nature of LSDD.

However, LSDD is still indirect because the sign of density

difference is inspected after the density difference is estimated.

In this section, we show how to directly estimate the sign of

the density difference.

A. Derivation of the Objective Function

By lower-bounding the L1-distance between probability

densities, defined as
∫
|p(x)− p′(x)| dx, (3)

we can obtain the sign of the density difference. We begin by

considering the following self-evident relation:

|t| ≥ tz, if |z| ≤ 1.

We can apply this relation at each point x, to obtain

|p(x)− p′(x)| ≥ g(x) [p(x)− p′(x)] if |g(x)| ≤ 1, ∀x.
By applying the above inequality to Eq.(3) and maximizing

with respect to g(x), we can obtain the tightest lower bound

as ∫
|p(x)− p′(x)| dx ≥ sup

g

∫
g(x) [p(x)− p′(x)] dx (4)

s.t. |g(x)| ≤ 1, ∀x.
It is straightforward to verify that the above relation will be

met with equality when

g(x) = sign (p(x)− p′(x)) .

What makes the expression in the right-hand side of Eq.(4)

especially useful is that the probability densities occur linearly

in the integral. By replacing the integrals with sample averages

and searching g(x) from a parametric family (denoted as

gα(x)), we can write the above as

α̂ = argmin
α

1

n′

n′∑

i=1

gα(x
′

i)−
1

n

n∑

j=1

gα(xj)

s.t. |gα(x)| ≤ 1, ∀x.
(5)

B. Optimization

Here we briefly discuss how to solve the optimization prob-

lem (5). The function in Eq. (5) should satisfy the constraint

|g(x)| ≤ 1, ∀ x. We can consider a clipped version of the

function that always satisfies the constraint:

g̃(x) = R(g(x)), where R(z) = min (1,max (−1, z)) .
We use a linear-in-parameter model,

g(x) =
b∑

ℓ=1

αℓϕℓ(x),

where ϕℓ(x) are the basis functions. Using the above defini-

tions and including a regularizer, we arrive at the following

objective function to be minimized:

J(α) =
1

n′

n′∑

i=1

R

(
b∑

ℓ=1

αℓϕℓ(x
′

i)

)
− 1

n

n∑

j=1

R

(
b∑

ℓ=1

αℓϕℓ(xj)

)

+
λ

2

b∑

ℓ=1

α2
ℓ . (6)

Although the above objective function is non-convex, we can

efficiently find a local minimizer using the convex-concave

procedure (CCCP) [7].

CCCP requires the objective function to be split into convex

and concave parts:

J(α) = Jvex(α) + Jcave(α).

This is done by expressing R(z) as

R(z) = C−1(z)− C1(z)− 1,

where Cǫ(z) = max(0, z − ǫ). This results in the following

convex and concave functions:

Jvex(α) =
1

n′

n′∑

i=1

C−1

(
b∑

ℓ=1

αℓϕℓ(x
′

i)

)

+
1

n

n∑

j=1

C1

(
b∑

ℓ=1

αℓϕℓ(xj)

)
+

λ

2

b∑

ℓ=1

α2
ℓ ,

Jcave(α) = − 1

n′

n′∑

i=1

C1

(
b∑

ℓ=1

αℓϕℓ(x
′

i)

)

− 1

n

n∑

j=1

C−1

(
b∑

ℓ=1

αℓϕℓ(xj)

)
.

Using the Fenchel inequality [8, p. 94], we can bound the

function Cǫ(z) as

Cǫ(z) ≥ zt− C∗

ǫ (t),



where C∗
ǫ (t) is the Fenchel dual of Cǫ(z),

C∗

ǫ (t) =

{
ǫt 0 ≤ t ≤ 1,

∞ otherwise.

Applying this to the concave part gives

Jcave(α) ≤ J̄cave(α, b, c),

where the bound is specified by b and c:

J̄cave(α, b, c) =
1

n′

n′∑

i=1

(
C∗

1 (bi)− bi

b∑

ℓ=1

αℓϕℓ(x
′

i)

)

+
1

n

n∑

j=1

(
C∗

−1(cj)− cj

b∑

ℓ=1

αℓϕℓ(xj)

)
.

This bound is convex w.r.t. b and c if α is fixed. Using this

bound, we have

J(α) ≤ Jvex(α) + J̄cave(α, b, c).

The strategy to minimize J(α) is then to alternately minimize

the right-hand side by minimizing w.r.t. α (keeping b and

c fixed) and minimize w.r.t. b and c (keeping α fixed).

Minimization w.r.t. α minimizes the current upper bound and

minimization w.r.t. b and c corresponds to tightening the

bound at the current point.

Our final optimization algorithm is summarized below:

1) Initialize the starting value:

α1 ← argmin
α

Jvex(α).

2) For t = 1, . . . T :

a) Tighten the upper-bound: Obtain b and c as

bt, ct ← argmin
b,c

J̄cave(α
t, b, c),

which can be analytically performed as

bti ←
{
0 if

∑b
ℓ=1

αt
ℓϕℓ(x

′
i) < 1,

1 otherwise,

ctj ←
{
0 if

∑b
ℓ=1

αt
ℓϕ(xj) < −1,

1 otherwise.

b) Minimize the upper bound: Set

αt+1 ← argmin
α

Jvex(α) + J̄cave(α, bt, ct),

which can be performed by solving the following

convex quadratic problem:

min
α

−
b∑

ℓ=1

αℓ


1

n′

n′∑

i=1

btiϕℓ(x
′

i)+
1

n

n∑

j=1

ctjϕℓ(xj)




+
1

n′

n′∑

i=1

ξ′i+
1

n

n∑

j=1

ξj+
λ

2

b∑

ℓ=1

α2
ℓ

s.t. ξ′i ≥ 0, ξ′i ≥
b∑

ℓ=1

αℓϕℓ(x
′

i) + 1, ∀i = 1, . . . , n′

ξj ≥ 0, ξj ≥
b∑

ℓ=1

αℓϕℓ(xj)− 1 ∀j = 1, . . . , n.

In practice, Gaussian kernels centered at the sample points

in Xp and Xp′ are chosen as the basis functions. All hyper-

parameters are set by cross-validation. We call this proposed

method direct sign density difference (DSDD) estimation.

C. Generalization Error Bounds

Suppose that we have a test distribution, that shares the same

class conditional distribution, but has a class prior pte(y =
1) = θp(y = 1) + (1− θ)p′(y = 1), with 0 ≤ θ ≤ 1. We can

then express θ as

θ =
pte(y = 1)− p′(y = 1)

p(y = 1)− p′(y = 1)
.

We consider the decision function of the form

g(x) =

n+n′∑

i=1

αik(x, ci), (7)

where k is a kernel function, α = (α1, . . . , αn+n′), and ci =
xi for 1 ≤ i ≤ n and ci = x′

i−n for n+ 1 ≤ i ≤ n+ n′. We

consider the following surrogate loss [9]:

ℓη(z) = min (1,max(0, 1− zη)) .

For any η > 0, ℓη(z) lower bounds the indicator loss and

approaches the indicator loss when η approaches zero. Then

we have the following theorem (its proof is omitted due to

lack of space; we decomposed the test distribution into the

weighted sum of two training distributions, and then applied

standard error bounds using the Rademacher complexity [9]):

Theorem 1: Assume that

∃Bk > 0, ∀x ∈ R
d, k(x,x) ≤ B2

k.

Let α∗ be an optimal solution to DSDD, g(x) be the decision

function defined in Eq. (7) with parameter α∗, and

BF =
√
α∗⊤Kα∗, B′

F = ‖α∗‖1,
where K is the kernel matrix. Assume that the ground truth

class labels y1, . . . , yn, y
′
1, . . . , y

′

n′ are available for evaluation.

Then, with probability at least 1− δ, we have

Epte
[ℓ(yg(x))]− θ

n

n∑

i=1

ℓη(yig(xi))−
1− θ

n′

n′∑

i=1

ℓη(y
′

ig(x
′

i))

≤
(

θ√
n
+

1− θ√
n′

)
2BkBF

η

+

(
θ√
n
+

1− θ√
n′

)
min

(
3, 1 +

4B2
kB

′

F

η

)√
ln(2/δ)

2
,

where the expectation Epte
[ℓ(yg(x))] follows the test distri-

bution pte(x, y).
From the above, we see that the order of the bound is

O
(
1/
√
n+ 1/

√
n′

)
. Compared to supervised classification

from i.i.d. data such as support vector machines [9], which

has an order of O(1/
√
n+ n′), our bounds converge slower.

However, we do not require class labels for training in our

problem setting.



IV. EXPERIMENTS

We first illustrate the operation of our method on a toy

example. Then we use real-world benchmark data to show the

superiority of our algorithm.

A. Toy Problem

We illustrate the problem and our method with a simple

example. Suppose that the class-conditional densities for the

two classes are given as

p(x|y = 1) = Nx (−12, I2×2) ,

p(x|y = −1) = Nx (12, I2×2) ,

where Nx(µ,Σ) denotes the normal density with mean µ and

covariance Σ w.r.t. x. 12 is a 2×1 vector of ones and I2×2 is

a 2×2 identity matrix. We generate 2 sets of 30 samples with

class-priors p(y = 1) = 0.3 and p′(y = 1) = 0.7, respectively.

The result is illustrated in Figure 1. As can be seen from this

example, we are able to obtain a labeling of the classes that

roughly corresponds to the true (unknown) labels of the data.

B. Benchmark Datasets

We compare our method against several competing methods

on benchmark datasets. For each experiment, we constructed

the datasets Xp and Xp′ by drawing n and n′ samples from

the positive and negative classes of the binary classification

datasets according to a prior of p(y = 1) and p′(y = 1).
The labeling was then performed using these two datasets. A

label was assigned to each sample according to the sign of

the density difference. Since the exact class label can not be

determined if the class-priors are unknown, the labeling error

rate was calculated:

LER := min (MCR, 1−MCR) ,

where MCR represents the misclassification rate with the

assigned labels. 1−MCR is the misclassification rate assuming

that all labels are flipped.

We compared the following methods:

• Direct Sign Density Difference (DSDD) Estimation

(proposed): Directly estimate sign (p(x)− p′(x)) using

the method described in Section III. Hyperparameters are

selected via cross validation.

• Least-Squares Density Difference (LSDD) Estimation:

Estimate sign [p(x)− p′(x)] by estimating p(x)− p′(x)
using the least squares fitting method [2]. Hyperparame-

ters are selected via cross validation.

• Kernel Density Estimation (KDE): Estimate

sign [p(x)− p′(x)] by estimating the densities p(x) and

p′(x) with KDE. Hyperparameters are selected using

least-squares cross validation.

• K-Means (KM): Cluster the data into two clusters using

the K-means algorithm [10].

• Spectral Clustering (SC): Cluster the data into two

clusters using the spectral clustering algorithm [11]. The

affinity matrix was constructed with 7 nearest neighbors.

• Squared-loss Mutual Information based Clustering

(SMIC) : Cluster the data according to the SMIC method

[12]. SMIC was chosen since it provides model selection,

avoiding the need for subjective parameter tuning.

For experiments, the UCI benchmark datasets1 were used.

We compare the performance of the methods by varying the

class balance on these datasets. Two class balances were

selected: one with a large difference between the classes

(p(y = 1) = 0.2 and p′(y = 1) = 0.8) and one with

a small difference between the classes (p(y = 1) = 0.35
and p′(y = 1) = 0.65). The average and standard deviation

of the labeling error rate for the two experiments, with

|Xp| = |Xp′ | = 40 are given in Tables I and II.

From the results we see that methods which follow the

approach proposed in Section II of estimating the sign of the

density difference (i.e., DSDD, LSDD, and KDE) generally

work better than methods using the cluster structure of the data

(i.e., KM, SC, and SMIC). The thyroid dataset lends itself to

interpretation of why these methods work better. The labels

in the thyroid dataset correspond to healthy and diseased.

The diseased label is caused by either a hyper-functioning or

hypo-functioning thyroid. These two underlying causes cause

within-class multimodality which may cause clustering-based

methods to fail.

Among the methods which estimate the sign of the density

difference, we see that DSDD generally performs better than

LSDD and LSDD in turn performs better than KDE. This is

as expected since KDE solves a more general problem than

LSDD, and LSDD solves a more general problem than DSDD.

This pattern is even more pronounced on the more difficult

case where the class balances are close to each other (Table II).

V. CONCLUSION

The problem of unsupervised labeling of two unbalanced

datasets was considered. We first showed that this problem

can be solved if two unlabeled datasets having different class

balances are available. More specifically, we showed that the

solution can be obtained by estimating of the sign of the

difference between probability densities. We then introduced a

method to directly estimate the sign of the density difference

and avoid density estimation. The method was shown on

various datasets to outperform competing methods that either

estimate the density difference or use the cluster structure of

the data.

Because the sign of density difference corresponds to the

Bayes optimal classifier under equal class balance, it may

be estimated by any classifier that separates Xp and Xp′ .

Following this idea, we tested the support vector machine

(SVM) for estimating the sign of density difference. However,

this did not work well due to the high overlap of Xp and

Xp′—both the datasets are mixtures of two classes, only with

different mixing ratios.

From this classification point of view, we can actually

see that our objective function (6) corresponds to the robust

1The datasets were obtained from http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/


TABLE I: Labeling error rate for experiments with a class prior of p(y = 1) = 0.2 and p′(y = 1) = 0.8. The size of each

dataset was |Xp| = 40 and |Xp′ | = 40. The best method in terms of the mean error and comparable methods according to the

two-sided paired t-test at the significance level 5% are specified by bold face. The standard deviation of the labeling error rate

is given in brackets.

Dataset DSDD LSDD KDE KM SC SMIC

australian .142 (.045) .174(.110) .211(.126) .266(.147) .381(.033) .303 (.103)
banana .179(.097) .170 (.070) .237(.147) .431(.068) .427(.141) .424 (.141)
diabetes .246(.122) .223 (.079) .226 (.051) .372(.080) .380(.094) .370 (.131)
german .268(.059) .281(.127) .211 (.051) .437(.114) .448(.128) .439 (.052)
heart .176 (.051) .174 (.047) .211(.074) .261(.131) .310(.032) .327 (.107)
image .198 (.078) .206(.047) .201 (.049) .385(.093) .351(.119) .384 (.135)
ionosphere .157 (.059) .184(.106) .194(.123) .329(.145) .319(.113) .311 (.174)
saheart .310(.093) .205 (.048) .238(.113) .422(.121) .395(.113) .384 (.072)
thyroid .102 (.052) .121(.116) .207(.074) .328(.113) .326(.109) .305 (.074)
twonorm .044(.085) .051(.072) .200(.028) .036 (.054) .043(.069) .048 (.071)

TABLE II: Labeling error rate for experiments with a class prior of p(y = 1) = 0.35 and p′(y = 1) = 0.65. The size of each

dataset was |Xp| = 40 and |Xp′ | = 40. The test setup is the same as that in Table I.

Dataset DSDD LSDD KDE KM SC SMIC

australian .244 (.116) .259(.088) .355(.104) .265(.080) .376(.065) .308 (.107)
banana .338 (.094) .339 (.100) .365(.067) .433(.049) .427(.069) .424 (.070)
diabetes .340 (.075) .361(.124) .345(.034) .373(.063) .380(.048) .371 (.114)
german .375(.042) .380(.093) .354 (.057) .437(.024) .445(.057) .438 (.041)
heart .270(.133) .247 (.084) .354(.052) .264(.059) .315(.081) .327 (.089)
image .331 (.078) .350(.067) .350(.039) .384(.031) .354(.049) .382 (.050)
ionosphere .291 (.099) .356(.066) .345(.048) .330(.070) .322(.058) .314 (.107)
saheart .378(.093) .353 (.057) .363(.066) .419(.082) .395(.022) .385 (.040)
thyroid .227 (.098) .251(.087) .302(.022) .326(.061) .329(.047) .307 (.076)
twonorm .164(.188) .153(.121) .352(.096) .036 (.053) .042(.122) .049 (.120)

SVM [13] that minimizes the ramp loss (a clipped hinge

loss). Thanks to the robustness brought by the ramp loss, the

overlapped datasets Xp and Xp′ can be separated more reliably,

and thus we obtained good estimation of the sign of density

difference.

Furthermore, this view conversely shows that the robust

SVM is actually a suitable classification method because it

directly estimates the Bayes optimal classifier, the sign of

density difference. Labeling and classification are different

problems, but one can actually give insight into the other.

In the future work, we will further investigate the relation

between labeling and classification.
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