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Abstract

Learning a classifier from positive and unlabeled data is an important class of
classification problems that are conceivable in many practical applications. In this
paper, we first show that this problem can be solved by cost-sensitive learning
between positive and unlabeled data. We then show that convex surrogate loss
functions such as the hinge loss may lead to a wrong classification boundary due
to an intrinsic bias, but the problem can be avoided by using non-convex loss func-
tions such as the ramp loss. We next analyze the excess risk when the class prior
is estimated from data, and show that the classification accuracy is not sensitive to
class prior estimation if the unlabeled data is dominated by the positive data (this
is naturally satisfied in inlier-based outlier detection because inliers are dominant
in the unlabeled dataset). Finally, we provide generalization error bounds and
show that, for an equal number of labeled and unlabeled samples, the generaliza-
tion error of learning only from positive and unlabeled samples is no worse than
2
√
2 times the fully supervised case. These theoretical findings are also validated

through experiments.

1 Introduction

Let us consider the problem of learning a classifier from positive and unlabeled data (PU classifica-
tion), which is aimed at assigning labels to the unlabeled dataset [1]. PU classification is conceivable
in various applications such as land-cover classification [2], where positive samples (built-up urban
areas) can be easily obtained, but negative samples (rural areas) are too diverse to be labeled. Outlier
detection in unlabeled data based on inlier data can also be regarded as PU classification [3, 4].

In this paper, we first explain that, if the class prior in the unlabeled dataset is known, PU classifica-
tion can be reduced to the problem of cost-sensitive classification [5] between positive and unlabeled
data. Thus, in principle, the PU classification problem can be solved by a standard cost-sensitive
classifier such as the weighted support vector machine [6]. The goal of this paper is to give new
insight into this PU classification algorithm. Our contributions are three folds:

• The use of convex surrogate loss functions such as the hinge loss may potentially lead
to a wrong classification boundary being selected, even when the underlying classes are
completely separable. To obtain the correct classification boundary, the use of non-convex
loss functions such as the ramp loss is essential.
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• When the class prior in the unlabeled dataset is estimated from data, the classification error
is governed by what we call the effective class prior that depends both on the true class prior
and the estimated class prior. In addition to gaining intuition behind the classification error
incurred in PU classification, a practical outcome of this analysis is that the classification
error is not sensitive to class-prior estimation error if the unlabeled data is dominated by
positive data. This would be useful in, e.g., inlier-based outlier detection scenarios where
inlier samples are dominant in the unlabeled dataset [3, 4]. This analysis can be regarded as
an extension of traditional analysis of class priors in ordinary classification scenarios [7, 8]
to PU classification.

• We establish generalization error bounds for PU classification. For an equal number of
positive and unlabeled samples, the convergence rate is no worse than 2

√
2 times the fully

supervised case.

Finally, we numerically illustrate the above theoretical findings through experiments.

2 PU classification as cost-sensitive classification

In this section, we show that the problem of PU classification can be cast as cost-sensitive classifi-
cation.

Ordinary classification: The Bayes optimal classifier corresponds to the decision function
f(X) ∈ {1,−1} that minimizes the expected misclassification rate w.r.t. a class prior of π:

R(f) := πR1(f) + (1− π)R−1(f),

where R−1(f) and R1(f) denote the expected false positive rate and expected false negative rate:

R−1(f) = P−1(f(X) ̸= −1) and R1(f) = P1(f(X) ̸= 1),

and P1 and P−1 denote the marginal probabilities of positive and negative samples.

In the empirical risk minimization framework, the above risk is replaced with their empirical ver-
sions obtained from fully labeled data, leading to practical classifiers [9].

Cost-sensitive classification: A cost-sensitive classifier selects a function f(X) ∈ {1,−1} in
order to minimize the weighted expected misclassification rate:

R(f) := πc1R1(f) + (1− π)c−1R−1(f), (1)

where c1 and c−1 are the per-class costs [5].

Since scaling does not matter in (1), it is often useful to interpret the per-class costs as reweighting
the problem according to new class priors proportional to πc1 and (1− π)c−1.

PU classification: In PU classification, a classifier is learned using labeled data drawn from the
positive class P1 and unlabeled data that is a mixture of positive and negative samples with unknown
class prior π:

PX = πP1 + (1− π)P−1.

Since negative samples are not available, let us train a classifier to minimize the expected misclassi-
fication rate between positive and unlabeled samples. Since we do not have negative samples in the
PU classification setup, we cannot directly estimate R−1(f) and thus we rewrite the risk R(f) not
to include R−1(f). More specifically, let RX(f) be the probability that the function f(X) gives the
positive label over PX [10]:

RX(f) = PX(f(X) = 1)

= πP1(f(X) = 1) + (1− π)P−1(f(X) = 1)

= π(1−R1(f)) + (1− π)R−1(f). (2)
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Then the risk R(f) can be written as

R(f) = πR1(f) + (1− π)R−1(f)

= πR1(f)− π(1−R1(f)) +RX(f)

= 2πR1(f) +RX(f)− π. (3)

Let η be the proportion of samples from P1 compared to PX , which is empirically estimated by
n

n+n′ where n and n′ denote the numbers of positive and unlabeled samples, respectively. The risk
R(f) can then be expressed as

R(f) = c1ηR1(f) + cX(1− η)RX(f)− π, where c1 =
2π

η
and cX =

1

1− η
.

Comparing this expression with (1), we can confirm that the PU classification problem is solved
by cost-sensitive classification between positive and unlabeled data with costs c1 and cX . Some
implementations of support vector machines, such as libsvm [6], allow for assigning weights
to classes. In practice, the unknown class prior π may be estimated by the methods proposed in
[10, 1, 11].

In the following sections, we analyze this algorithm.

3 Necessity of non-convex loss functions in PU classification

In this section, we show that solving the PU classification problem with a convex loss function may
lead to a biased solution, and the use of a non-convex loss function is essential to avoid this problem.

Loss functions in ordinary classification: We first consider ordinary classification problems
where samples from both classes are available. Instead of a binary decision function f(X) ∈
{−1, 1}, a continuous decision function g(X) ∈ R such that sign(g(X)) = f(X) is learned. The
loss function then becomes

J0-1(g) = πE1 [ℓ0-1(g(X))] + (1− π)E−1 [ℓ0-1(−g(X))] ,

where Ey is the expectation over Py and ℓ0-1(z) is the zero-one loss:

ℓ0-1(z) =

{
0 z > 0,

1 z ≤ 0.

Since the zero-one loss is hard to optimize in practice due to its discontinuous nature, it may be
replaced with a ramp loss (as illustrated in Figure 1):

ℓR(z) =
1

2
max(0,min(2, 1− z)),

giving an objective function of

JR(g) = πE1 [ℓR (g(X))] + (1− π)E−1 [ℓR(−g(X))] . (4)

To avoid the non-convexity of the ramp loss, the hinge loss is often preferred in practice:

ℓH(z) =
1

2
max(1− z, 0),

giving an objective of

JH(g) = πE1 [ℓH (g(X))] + (1− π)E−1 [ℓH(−g(X))] . (5)

One practical motivation to use the convex hinge loss instead of the non-convex ramp loss is that
separability (i.e., ming JR(g) = 0) implies ℓR(z) = 0 everywhere, and for all values of z for which
ℓR(z) = 0, we have ℓH(z) = 0. Therefore, the convex hinge loss will give the same decision
boundary as the non-convex ramp loss in the ordinary classification setup, under the assumption that
the positive and negative samples are non-overlapping.
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ℓH(z) = 1
2
max(0, 1−z)

1

1
2

1−1

ℓH(z)

ℓR(z)

ℓR(z) =
1
2
max(0,min(2, 1−z))

(a) Loss functions

ℓH(z) + ℓH(−z)

1

1−1

ℓR(z) + ℓR(−z)

(b) Resulting penalties

Figure 1: ℓR(z) denotes the ramp loss, and ℓH(z) denotes the hinge loss. ℓR(z)+ℓR(−z) is constant
but ℓH(z) + ℓH(−z) is not and therefore causes a superfluous penalty.

Ramp loss function in PU classification: An important question is whether the same interpreta-
tion will hold for PU classification: can the PU classification problem be solved by using the convex
hinge loss? As we show below, the answer to this question is unfortunately “no”.

In PU classification, the risk is given by (3), and its ramp-loss version is given by

JPU-R(g) = 2πR1(f) +RX(f)− π (6)
= 2πE1 [ℓR(g(X))] + [πE1 [ℓR(−g(X))] + (1− π)E−1 [ℓR(−g(X))]]− π (7)
= πE1 [ℓR(g(X))] + πE1 [ℓR(g(X)) + ℓR(−g(X))]

+ (1− π)E−1 [ℓR(−g(X))]− π, (8)

where (6) comes from (3) and (7) is due to the substitution of (2). Since the ramp loss is symmetric
in the sense of

ℓR(−z) + ℓR(z) = 1,

(8) yields

JPU-R(g) = πE1 [ℓR(g(X))] + (1− π)E−1 [ℓR(−g(X))] . (9)

(9) is essentially the same as (4), meaning that learning with the ramp loss in the PU classification
setting will give the same classification boundary as in the ordinary classification setting.

For non-convex optimization with the ramp loss, see [12, 13].

Hinge loss function in PU classification: On the other hand, using the hinge loss to minimize (3)
for PU learning gives

JPU-H(g) = 2πE1 [ℓH(g(X))] + [πE1 [ℓH(−g(X))] + (1− π)E−1 [ℓH(−g(X))]]− π, (10)
= πE1 [ℓH (g(X))] + (1− π)E−1 [ℓH(−g(X))]︸ ︷︷ ︸

Ordinary error term, cf. (5)

+πE1 [ℓH(g(X)) + ℓH(−g(X))]︸ ︷︷ ︸
Superfluous penalty

−π.

We see that the hinge loss has a term that corresponds to (5), but it also has a superfluous penalty
term (see also Figure 1). This penalty term may cause an incorrect classification boundary to be
selected. Indeed, even if g(X) perfectly separates the data, it may not minimize JPU-H(g) due to the
superfluous penalty. To obtain the correct decision boundary, the loss function should be symmetric
(and therefore non-convex). Alternatively, since the superfluous penalty term can be evaluated, it
can be subtracted from the objective function. Note that, for the problem of label noise, an identical
symmetry condition has been obtained [14].

Illustration: We illustrate the failure of the hinge loss on a toy PU classification problem with
class conditional densities of:

p(x|y = 1) = N
(
−3, 12

)
and p(x|y = 1) = N

(
3, 12

)
,

where N (µ, σ2) is a normal distribution with mean µ and variance σ2. The hinge-loss objective
function for PU classification, JPU-H(g), is minimized with a model of g(x) = wx + b (the ex-
pectations in the objective function is computed via numerical integration). The optimal decision
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Figure 2: Illustration of the failure of the hinge loss for PU classification. The optimal threshold
and the threshold estimated by the hinge loss differ significantly (Figure 2(b)), causing a difference
in the misclassification rates (Figure 2(c)). The threshold for the ramp loss agrees with the optimal
threshold.

threshold and the threshold for the hinge loss is plotted in Figure 2(b) for a range of class priors.
Note that the threshold for the ramp loss will correspond to the optimal threshold. From this figure,
we note that the hinge-loss threshold differs from the optimal threshold. The difference is especially
severe for larger class priors, due to the fact that the superfluous penalty is weighted by the class
prior. When the class-prior is large enough, the large hinge-loss threshold causes all samples to be
positively labeled. In such a case, the false negative rate is R1 = 0 but the false positive rate is
R−1 = 1. Therefore, the overall misclassification rate for the hinge loss will be 1− π.

4 Effect of inaccurate class-prior estimation

To solve the PU classification problem by cost-sensitive learning described in Section 2, the true
class prior π is needed. However, since it is often unknown in practice, it needs to be estimated, e.g.,
by the methods proposed in [10, 1, 11]. Since many of the estimation methods are biased [1, 11],
it is important to understand the influence of inaccurate class-prior estimation on the classification
performance. In this section, we elucidate how the error in the estimated class prior π̂ affects the
classification accuracy in the PU classification setting.

Risk with true class prior in ordinary classification: In the ordinary classification scenarios
with positive and negative samples, the risk for a classifier f on a dataset with class prior π is given
as follows ([8, pp. 26–29] and [7]):

R(f, π) = πR1(f) + (1− π)R−1(f).

The risk for the optimal classifier according to the class prior π is therefore,

R∗(π) = min
f∈F

R(f, π)

Note that R∗(π) is concave, since it is the minimum of a set of functions that are linear w.r.t. π. This
is illustrated in Figure 3(a).

Excess risk with class prior estimation in ordinary classification: Suppose we have a classifier
f̂ that minimizes the risk for an estimated class prior π̂:

f̂ := argmin
f∈F

R(f, π̂).

The risk when applying the classifier f̂ on a dataset with true class prior π is then on the line tangent
to the concave function R∗(π) at π = π̂, as illustrated in Figure 3(a):

R̂(π) = πR1(f̂) + (1− π)R−1(f̂).

The function f̂ is suboptimal at π, and results in the excess risk [8]:

Eπ = R̂(π)−R(π).
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Figure 3: Learning in the PU framework with an estimated class prior π̂ is equivalent to selecting
a classifier which minimizes the risk according to an effective class prior π̃. (a) The difference
between the effective class prior π̃ and the true class prior π causes an excess risk Eπ. (b) The
effective class prior π̃ depends on the true class prior π and the estimated class prior π̂.

Excess risk with class prior estimation in PU classification: We wish to select a classifier that
minimizes the risk in (3). In practice, however, we only know an estimated class prior π̂. Therefore,
a classifier is selected to minimize

R(f) = 2π̂R1(f) +RX(f)− π̂. (11)

Expanding the above risk based on (2) gives

R(f) = 2π̂R1(f) + π(1−R1(f)) + (1− π)R−1(f)− π̂

= (2π̂ − π)R1(f) + (1− π)R−1(f) + π − π̂.

Thus, the estimated class prior affects the risk with respect to 2π̂ − π and 1 − π. This result
immediately shows that PU classification cannot be performed when the estimated class prior is
less than half of the true class prior: π̂ ≤ 1

2π.

We define the effective class prior π̃ so that 2π̂ − π and 1− π are normalized to sum to one:

π̃ =
2π̂ − π

2π̂ − π + 1− π
=

2π̂ − π

2π̂ − 2π + 1
.

Figure 3(b) shows the profile of the effective class prior π̃ for different π. The graph shows that
when the true class prior π is large, π̃ tends to be flat around π. When the true class prior is known
to be large (such as the proportion of inliers in inlier-based outlier detection), a rough class-prior
estimator is sufficient to have a good classification performance. On the other hand, if the true class
prior is small, PU classification tends to be hard and an accurate class-prior estimator is necessary.

We also see that when the true class prior is large, overestimation of the class prior is more attenu-
ated. This may explain why some class-prior estimation methods [1, 11] still give a good practical
performance in spite of having a positive bias.

5 Generalization error bounds for PU classification

In this section, we analyze the generalization error for PU classification, when training samples are
clearly not identically distributed.

More specifically, we derive error bounds for the classification function f(x) of form

f(x) =
n∑

i=1

αik(xi,x) +
n′∑
j=1

α′
jk(x

′
j ,x),

where x1, . . . ,xn are positive training data and x′
1, . . . ,x

′
n′ are positive and negative test data. Let

A = {(α1, . . . , αn, α
′
1, . . . , α

′
n′) | x1, . . . ,xn ∼ p(x | y = +1),x′

1, . . . ,x
′
n′ ∼ p(x)}
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be the set of all possible optimal solutions returned by the algorithm given some training data and
test data according to p(x | y = +1) and p(x). Then define the constants

Cα = supα∈A,x1,...,xn∼p(x|y=+1),x′
1,...,x

′
n′∼p(x)(∑n

i,i′=1 αiαi′k(xi,xi′) + 2
∑n

i=1

∑n′

j=1 αiα
′
jk(xi,x

′
j) +

∑n′

j,j′=1 α
′
jα

′
j′k(x

′
j ,x

′
j′)

)1/2

,

Ck = supx∈Rd

√
k(x,x),

and define the function class

F = {f : x 7→
n∑

i=1

αik(xi,x) +

n′∑
j=1

α′
jk(x

′
j ,x) | α ∈ A,

x1, . . . ,xn ∼ p(x | y = +1),x′
1, . . . ,x

′
n′ ∼ p(x)}.

(12)

Let ℓη(z) be a surrogate loss for the zero-one loss

ℓη(z) =


0 if z > η,

1− z/η if 0 < z ≤ η,

1 if z ≤ 0.

For any η > 0, ℓη(z) is lower bounded by ℓ0-1(z) and approaches ℓ0-1(z) as η approaches zero.
Moreover, let

ℓ̃(yf(x)) =
2

y + 3
ℓ0-1(yf(x)) and ℓ̃η(yf(x)) =

2

y + 3
ℓη(yf(x)).

Then we have the following theorems (proofs are provided in Appendix A). Our key idea is to
decompose the generalization error as

Ep(x,y)[ℓ0-1(yf(x))] = π∗Ep(x|y=+1)

[
ℓ̃(f(x))

]
+Ep(x,y)

[
ℓ̃(yf(x))

]
,

where π∗ := p(y = 1) is the true class prior of the positive class.
Theorem 1. Fix f ∈ F , then, for any 0 < δ < 1, with probability at least 1 − δ over the repeated
sampling of {x1, . . . ,xn} and {(x′

1, y
′
1), . . . , (x

′
n′ , y′n′)} for evaluating the empirical error,1

Ep(x,y)[ℓ0-1(yf(x))]−
1

n′

n′∑
j=1

ℓ̃(y′jf(x
′
j)) ≤

π∗

n

n∑
i=1

ℓ̃(f(xi)) +

(
π∗

2
√
n
+

1√
n′

)√
ln(2/δ)

2
.

(13)

Theorem 2. Fix η > 0, then, for any 0 < δ < 1 with probability at least 1 − δ over the repeated
sampling of {x1, . . . ,xn} and {(x′

1, y
′
1), . . . , (x

′
n′ , y′n′)} for evaluating the empirical error, every

f ∈ F satisfies

Ep(x,y)[ℓ0-1(yf(x))]−
1

n′

n′∑
j=1

ℓ̃η(y
′
jf(x

′
j)) ≤

π∗

n

n∑
i=1

ℓ̃η(f(xi)) +

(
π∗
√
n
+

2√
n′

)
CαCk

η

+

(
π∗

2
√
n
+

1√
n′

)√
ln(2/δ)

2
.

In both theorems, the generalization error bounds are of order O(1/
√
n + 1/

√
n′). This order is

optimal for PU classification where we have n i.i.d. data from a distribution and n′ i.i.d. data from
another distribution. The error bounds for fully supervised classification, by assuming these n+ n′

data are all i.i.d., would be of order O(1/
√
n+ n′). However, this assumption is unreasonable

for PU classification, and we cannot train fully supervised classifiers using these n + n′ samples.
Although the orders (and the losses) differ slightly, O(1/

√
n + 1/

√
n′) for PU classification is no

worse than 2
√
2 times O(1/

√
n+ n′) for fully supervised classification (assuming n and n′ are

equal). To the best of our knowledge, no previous work has provided such generalization error
bounds for PU classification.

1The empirical error that we cannot evaluate in practice is in the left-hand side of (13), and the empirical
error and confidence terms that we can evaluate in practice are in the right-hand side of (13).
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Table 1: Misclassification rate (in percent) for PU classification on the USPS dataset. The best, and
equivalent by 95% t-test, is indicated in bold.
π 0.2 0.4 0.6 0.8 0.9 0.95

Ramp Hinge Ramp Hinge Ramp Hinge Ramp Hinge Ramp Hinge Ramp Hinge
0 vs 1 3.36 4.40 4.85 4.78 5.48 5.18 4.16 4.00 2.68 9.86 1.71 4.94
0 vs 2 5.15 6.20 6.96 8.67 7.22 8.79 5.90 14.60 4.12 9.92 2.80 4.94
0 vs 3 3.49 5.52 4.72 8.08 5.02 8.52 4.06 16.51 2.89 9.92 2.12 4.94
0 vs 4 1.68 2.83 2.05 4.00 2.21 3.99 2.00 3.03 1.70 9.92 1.42 4.94
0 vs 5 5.21 7.42 7.22 11.16 7.46 12.04 6.16 19.78 4.36 9.92 3.21 4.94
0 vs 6 11.47 11.61 19.87 19.59 22.58 22.94 15.13 19.83 8.86 9.92 5.29 4.94
0 vs 7 1.89 3.55 2.55 4.61 2.64 3.70 2.31 2.49 1.78 9.92 1.39 4.94
0 vs 8 3.98 5.09 4.81 7.00 4.75 6.85 3.74 11.34 2.79 9.92 2.11 4.94
0 vs 9 1.22 2.76 1.60 3.86 1.73 3.56 1.61 2.24 1.38 9.92 1.13 4.94
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Figure 4: Examples of the classification boundary for the “0” vs. “7” digits, obtained by PU learning.
The unlabeled dataset and the underlying (latent) class labels are given. Since discriminant function
for the hinge loss case is constant 1 when π = 0.9, no decision boundary can be drawn and all
negative samples are misclassified.

6 Experiments
In this section, the experimentally compare the performance of the ramp loss and the hinge loss in PU
classification (weighting was performed w.r.t. the true class prior and the ramp loss was optimized
with [12]). We used the USPS dataset, with the dimensionality reduced to 2 via principal component
analysis to enable illustration. 550 samples were used for the positive and mixture datasets. From the
results in Table 1, it is clear that the ramp loss gives a much higher classification accuracy than the
hinge loss, especially for large class priors. This is due to the fact that the effect of the superfluous
penalty term in (10) becomes larger since it scales with π.

When the class prior is large, the classification accuracy for the hinge loss is often close to 1 − π.
This can be explained by (10): collecting the terms for the positive expectation, we get an effective
loss function for the positive samples (illustrated in Figure 4(a)). When π is large enough, the
positive loss is minimized, giving a constant 1. The misclassification rate becomes 1− π since it is
a combination of the false negative rate and the false positive rate according to the class prior.

Examples of the discrimination boundary for digits “0” vs. “7” are given in Figure 4. When the
class-prior is low (Figure 4(b) and Figure 4(c)) the misclassification rate of the hinge loss is slightly
higher. For large class-priors (Figure 4(d)), the hinge loss causes all samples to be classified as
positive (inspection showed that w = 0 and b = 1).

7 Conclusion
In this paper we discussed the problem of learning a classifier from positive and unlabeled data.
We showed that PU learning can be solved using a cost-sensitive classifier if the class prior of the
unlabeled dataset is known. We showed, however, that a non-convex loss must be used in order to
prevent a superfluous penalty term in the objective function.

In practice, the class prior is unknown and estimated from data. We showed that the excess risk is
actually controlled by an effective class prior which depends on both the estimated class prior and
the true class prior. Finally, generalization error bounds for the problem were provided.
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A Proofs of Theorems

In this section, we give proofs of theorems.

A.1 Decomposition of generalization error in PU classification

Assume that π∗ := p(y = 1) is the true class prior of the positive class. Subsequently,

Ep(x,y)[ℓ0-1(yf(x))] =

∫
Rd

∑
y
ℓ0-1(yf(x))p(x, y)dx

=

∫
Rd

∑
y
ℓ̃(yf(x))

(
y + 3

2

)
p(x, y)dx

=

∫
Rd

∑
y
ℓ̃(yf(x))(2p(x, y = +1) + p(x, y = −1))dx

= π∗
∫
Rd

ℓ̃(f(x))p(x | y = +1)dx+

∫
Rd

∑
y
ℓ̃(yf(x))p(x, y)dx

= π∗Ep(x|y=+1)

[
ℓ̃(f(x))

]
+Ep(x,y)

[
ℓ̃(yf(x))

]
. (14)

This decomposition is the key idea of our error bounds.

A.2 Proof of Theorem 1

Note that ℓ̃ maps to [0, 1], but if y = +1 it maps to [0, 1/2]. We apply McDiarmid’s inequality and
obtain

Pr

{
Ep(x|y=+1)

[
ℓ̃(f(x))

]
− 1

n

n∑
i=1

ℓ̃(f(xi)) ≥ ϵ

}
≤ exp

(
− 2ϵ2

n(1/2n)2

)
.

Equating the right-hand side of the above inequality to δ/2 gives us that with probability at least
1− δ/2,

Ep(x|y=+1)

[
ℓ̃(f(x))

]
− 1

n

n∑
i=1

ℓ̃(f(xi)) ≤
√

ln(2/δ)

8n
.

Apply McDiarmid’s inequality again and obtain that with probability at least 1− δ/2,

Ep(x,y)

[
ℓ̃(yf(x))

]
− 1

n′

n′∑
j=1

ℓ̃(y′jf(x
′
j)) ≤

√
ln(2/δ)

2n′ .

Combining these two concentration inequalities and Eq. (14) completes the proof.

A.3 Proof of Theorem 2

Definition 3 ([15], Definitions 3.1 and 3.2). Let F be a class of functions. Let x1, . . . ,xn be in-
dependent observations drawn according to p(x), and σ1, . . . , σn be independent uniformly {±1}-
valued random variables, i.e., Rademacher variables. The empirical Rademacher complexity of F
conditioned on x1, . . . ,xn is defined by

R̂n(F) := Eσ1,...,σn

{
sup
f∈F

1

n

n∑
i=1

σif(xi)

}
,

and the Rademacher complexity of F is defined by

Rn(F) := Ex1,...,xn

{
R̂n(F)

}
.
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Denote by Rn(F) the Rademacher complexity w.r.t. p(x | y = +1), and R′
n′(F) the Rademacher

complexity w.r.t. p(x). By Theorem 5.5 of [15] and the condition that Ck = supx∈Rd

√
k(x,x),

we get

Rn(F) ≤ CαCk√
n

,

R′
n′(F) ≤ CαCk√

n′
.

(15)

Next, we need the following lemmas.
Lemma 4. Fix η > 0, then, for any 0 < δ < 1 with probability at least 1 − δ over the repeated
sampling of {(x′

1, y
′
1), . . . , (x

′
n′ , y′n′)} for evaluating the empirical error, every f ∈ F satisfies

Ep(x,y)

[
ℓ̃(yf(x))

]
− 1

n′

n′∑
j=1

ℓ̃η(y
′
jf(x

′
j)) ≤

2

η
R′

n′(F) +

√
ln(1/δ)

2n
.

Proof. Note that both ℓ̃ and ℓ̃η map to [0, 1], ℓ̃ is lower bounded by ℓ̃η , and the Lipschitz constant of
ℓ̃η is 1/η. Hence, this lemma is essentially same as the first half of Theorem 4.4 in [15].

Lemma 5. Fix η > 0, then, for any 0 < δ < 1 with probability at least 1 − δ over the repeated
sampling of {x1, . . . ,xn} for evaluating the empirical error, every f ∈ F satisfies

Ep(x|y=+1)

[
ℓ̃(f(x))

]
− 1

n

n∑
i=1

ℓ̃η(f(xi)) ≤
1

η
Rn(F) +

√
ln(1/δ)

8n
.

Proof. If we fix y = +1, both ℓ̃ and ℓ̃η map to [0, 1/2], and the Lipschitz constant of ℓ̃η is 1/(2η).
Then, the proof of this lemma is analogous with the proof of the first half of Theorem 4.4 in [15],
while there are two difference points:

• When applying Theorem 3.1 of [15], note that both ℓ̃ and ℓ̃η map to [0, 1/2], and conse-
quently McDiarmid’s inequality results in a tighter bound;

• When applying Lemma 4.2 of [15], note that ℓ̃η is (1/(2η))-Lipschitz continuous, and thus
the contraction of Rademacher averages results in a tighter bound.

By Lemma 5 and (15), with probability at least 1−δ/2 over the repeated sampling of {x1, . . . ,xn},

Ep(x|y=+1)

[
ℓ̃(f(x))

]
− 1

n

n∑
i=1

ℓ̃η(f(xi)) ≤
CαCk

η
√
n

+

√
ln(2/δ)

8n
.

Similarly, by Lemma 4 and (15), with probability at least 1 − δ/2 over the repeated sampling of
{(x′

1, y
′
1), . . . , (x

′
n′ , y′n′)},

Ep(x,y)

[
ℓ̃(yf(x))

]
− 1

n′

n′∑
j=1

ℓ̃η(y
′
jf(x

′
j)) ≤

2CαCk

η
√
n′

+

√
ln(2/δ)

2n′ .

Combining these two concentration inequalities and Eq. (14) completes the proof.
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