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Abstract
We discuss binary classification from only pos-
itive and unlabeled data (PU classification),
which is conceivable in various real-world ma-
chine learning problems. Since unlabeled data
consists of both positive and negative data, sim-
ply separating positive and unlabeled data yields
a biased solution. Recently, it was shown that
the bias can be canceled by using a particular
non-convexloss such as the ramp loss. However,
classifier training with a non-convex loss is not
straightforward in practice. In this paper, we dis-
cuss aconvexformulation for PU classification
that can still cancel the bias. The key idea is to
use different loss functions for positive and unla-
beled samples. However, in this setup, the hinge
loss is not permissible. As an alternative, we pro-
pose the double hinge loss. Theoretically, we
prove that the estimators converge to the optimal
solutions at the optimal parametric rate. Exper-
imentally, we demonstrate that PU classification
with the double hinge loss performs as accurate
as the non-convex method, with a much lower
computational cost.

1. Introduction

Let us consider the problem of learning a classifier only
from positive and unlabeled data. This problem, which re-
fer to asPU classification, arises in various practical situa-
tions under different guises. For example:

• The goal ofidentificationis to find samples in an unla-
beled dataset that are similar to the samples provided
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by a user. Such a situation occurs, e.g., in automatic
face tagging: a user provides a set of images of him-
self, and the task is to automatically tag photos in the
user’s photo album.

• Inlier-based outlier detectionis aimed at identify-
ing outliers in an unlabeled dataset based on another
dataset that consists only of inliers (Hido et al., 2008;
Smola et al., 2009). Thanks to the information brought
by the inlier dataset, this inlier-based approach is
more powerful than the conventional completely un-
supervised approach. This problem is also known as
semi-supervised novelty detection(Scott & Blanchard,
2009; Blanchard et al., 2010).

• If the negative class istoo diverse, it is difficult to
collect negative data in a representative way. Such a
situation is typically observable in “one-vs-rest” clas-
sification. For example, when classifying land cover
images into urban and non-urban regions (Li et al.,
2011), it is easy to obtain urban samples, but it is diffi-
cult to representatively collect diverse non-urban sam-
ples.

• Thenegative-class dataset shiftchanges the probabil-
ity distributions of negative samples between the time
when the training data is collected and when the clas-
sifier is applied to the test data. Solving this prob-
lem with an ordinary classifier would require constant
generation of the negative dataset to keep up with the
changing distributions. On the other hand, PU classi-
fication only requires to update the unlabeled dataset,
which is much less costly. Negative-class dataset shift
may occur in spam detection, where adversarial spam-
mers may change the tendency of negative samples
(‘spam’) to defeat the existing classifier, while the
positive class (‘non-spam’) is expected to remain sta-
ble over time.

Given its wide applicability as described above, PU clas-
sification is gathering a great deal of attention these days.
A naive approach to PU classification is to train a classi-
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fier to separate positive and unlabeled samples. However,
such a naive approach yields a poor solution since the un-
labeled dataset consists of both positive and negative data.
Although using a loss function weighted according to the
class prior of the unlabeled dataset1 was shown to produce a
better solution (Blanchard et al., 2010; Scott & Blanchard,
2009), the PU classifier trained in this way still has a sys-
tematic estimation bias.

Recently, it was shown that using a loss functionℓ(z) such
thatℓ(z) + ℓ(−z) = 1 can cancel the bias completely. For
example, theramp loss, which is used in therobust support
vector machine(Collobert et al., 2006; Wu & Liu, 2007),
satisfies this condition2. Classifier training with the ramp
loss can be performed, e.g,. via theconvex-concave proce-
dure(CCCP) (Yuille & Rangarajan, 2002). However, non-
convex optimization is computationally expensive and only
a sub-optimal local solution may be obtained. Another non-
convex formulation was proposed in Smola et al. (2009).

To overcome this weakness of the non-convex formulation,
we analyze a formulation of PU classification that isconvex
but can still cancel the bias. The key idea is to use differ-
ent loss functions for positive and unlabeled samples: an
ordinary convex loss functionℓ(z) for unlabeled samples
and a composite loss functionℓ(z) − ℓ(−z) for positive
samples3. If ℓ(z) − ℓ(−z) is a convex function, the en-
tire objective function becomes convex and thus the global
solution can be obtained efficiently. Thelogistic lossand
thesquared lossimmediately yield convex composite loss
functions. On the other hand, the composite loss derived
from thehinge lossis not convex, but the modified hinge
loss with an extra kink (which we call thedouble hinge
loss) yields a convex composite loss.

Theoretically, we prove that the estimators converge to the
optimal solutions at the optimal parametric rate. Experi-
mentally, the superior accuracy and computational advan-
tage of the proposed double hinge loss is illustrated on
benchmark datasets.

2. Non-convex PU classification

In this section, we formulate the problem of PU classifica-
tion and review the non-convex PU classification method
proposed in du Plessis et al. (2014).

1Several methods have been introduced to estimate this class
prior (e.g., Scott & Blanchard, 2009; du Plessis & Sugiyama,
2014).

2Loss functionℓ(z) that satisfiesℓ(z) + ℓ(−z) = 1 is always
non-convex.

3Note that this idea has been previously shown in the context
of learning from noisy labels (Natarajan et al., 2013). For correct
parameter choice, PU learning can be interpreted as a special case
of learning with noisy labels.

Formulation of PU classification: Let x ∈ R
d be ad-

dimensional pattern andy ∈ {1,−1} be a class label. We
assume that we have a positive datasetX , and an unlabeled
datasetX ′ i.i.d. as

X := {xi}
n
i=1 ∼ p(x|y = 1), X ′ :=

{
x′
j

}n′

j=1
∼ p(x),

wherep(x|y) is the class-conditional density of patterns
andp(x) is the marginal density of patterns. Since the un-
labeled datasetX ′ consists of positive and negative sam-
ples, the marginal density isp(x) := πp(x|y = 1) + (1 −
π)p(x|y = −1). The goal is to learn a classifierg(x) that
assigns a label̂y to a new patternx asŷ = sign (g(x)).

The optimal classifier g∗ is given by g∗ =
argming∈G J0-1(g), where J0-1(g) is the expected
misclassification rate when the classifierg(x) is applied to
unlabeled samples distributed according top(x):

J0-1(g)=πE1 [ℓ0-1(g(X))]+(1−π)E−1 [ℓ0-1(−g(X))] ,
(1)

where the zero-one loss isℓ0-1(z) =
1
2 sign(z) +

1
2 .

PU classification by non-convex loss minimization: In
the ordinary classification setting where positive and neg-
ative samples are available for classifier training, the ex-
pectationsE1 andE−1 in Eq. (1) can be estimated by cor-
responding sample averages. In the PU classification set-
ting, however, no labeled samples from the negative class
is available and thereforeE−1 cannot be estimated directly.

This problem can be avoided by expressingJ0-1(g) as fol-
lows (du Plessis et al., 2014):

J0-1(g)=2πE1 [ℓ0-1(g(X))] + EX [ℓ0-1 (−g(X))]− π,
(2)

whereEX denotes the expectation overp(x). This comes
from

EX [ℓ0-1(−g(X))]

= πE1 [ℓ0-1(−g(X))] + (1− π)E−1 [ℓ0-1(−g(X))]

= π (1− E1 [ℓ0-1(g(X))]) + (1− π)E−1 [ℓ0-1(−g(X))] ,

where the last line is due toℓ0-1(−z) = 1 − ℓ0-1(z). Note
that Eq. (2) corresponds to thecost-sensitive classification
(Elkan, 2001) with weights2π/η and1/(1 − η), whereη
is the proportion of positive samples to unlabeled samples.

In practice, minimizing Eq. (2) is problematic since the
subgradient of the zero-one loss is zero everywhere except
when z = 0. For this reason, the zero-one loss is often
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substituted with asurrogateloss function4 ℓ(z):

JPU(g) = 2πE1 [ℓ(g(X))] +

[
πE1 [ℓ(−g(X))]

+ (1− π)E−1 [ℓ(−g(X))]

]
− π

= πE1 [ℓ (g(X))] + (1− π)E−1 [ℓ(−g(X))]︸ ︷︷ ︸
Ordinary error term

+ πE1 [ℓ(g(X)) + ℓ(−g(X))]︸ ︷︷ ︸
Superfluous penalty

−π.

The first and second terms correspond to the ordinary clas-
sification loss, while the third term is asuperfluousterm
that is specific to the PU classification setting. Due to the
superfluous term, a systematic estimation bias is incurred
by naive surrogate loss minimization.

However, as shown in du Plessis et al. (2014), the superflu-
ous term can be canceled when the loss function satisfies
ℓ(z) + ℓ(−z) = 1. Note that this condition is met only by
non-convex loss functions such as the ramp loss5.

Non-convex loss functions are, however, often problematic
in practice due to the difficulty of non-convex optimization
and the existence of local sub-optimal solutions. In the next
section, we explore an alternative way to remove the super-
fluous penalty.

3. Convex PU classification

In this section, we give the formulation for convex PU clas-
sification.

Formulation: Let us consider another expression of
J0-1(g) based on

(1− π)E−1 [ℓ0-1(−g(X))]

= EX [ℓ0-1(−g(X))]− πE1 [ℓ0-1(−g(X))] .

Substituting this into Eq. (1), we obtain

J0-1(g)=πE1 [ℓ0-1(g(X))−ℓ0-1(−g(X))]+EX [ℓ0-1(−g(X)] .

If the zero-one loss is replaced with a surrogate lossℓ(z),
we have

J(g) = πE1

[
ℓ̃(g(X))

]
+ EX [ℓ(−g(X))] , (3)

where ℓ̃(z) is thecomposite loss: ℓ̃(z) = ℓ(z) − ℓ(−z).
Eq.(3) corresponds to using an ordinary loss for unlabeled
samples and a composite loss for positive samples.

4Examples of surrogate loss functions are illustrated in Fig. 1.
Many surrogate loss functions are convex, which results in convex
optimization problems.

5The same condition was also proved in Ghosh et al. (2014)
for learning with label noise.

z

ℓ(z)

Figure 1.Selected loss functions.

When ℓ(z) is convex, the composite loss̃ℓ(z) is the dif-
ference between two convex functions. The key question
is whether the composite loss can be convex, which makes
Eq.(3) a convex function. The following simple theorem
(proven in Appendix A.1) positively answer the question.

Theorem 1. If the composite loss̃ℓ(z) is convex, it is linear.

Various losses are illustrated in Fig. 1 (definitions are in
Table 1). A simple calculation shows that some losses, such
as the Hinge loss, do not result in a linear composite loss.

For simplicity, let us always normalize the losses so that the
composite loss is̃ℓ(z) = −z. This results in an objective
function of

J(g) = πE1 [−g(X)] + EX [ℓ (−g(X))] . (4)

Note that the above is a special case of the previously pro-
posed estimator in Natarajan et al. (2013) for learning from
label noise. For appropriate parameter choices, the learning
with label noise problem is reduced to PU learning.

Empirical version: In practice, we use a linear-in-
parameter model for functiong(x):

g(x) = α⊤ϕ(x) + b, (5)

where ϕ(x) =
[
ϕ1(x) . . . ϕm(x)

]⊤
is a set

of basis functions. For basis functions, we may
use, e.g., the Gaussian functions centered around sam-

ple pointsϕℓ(x) = exp
(
−‖x− cℓ‖

2
/(2σ2)

)
, where

{c1, . . . , cm} = {x1, . . . ,xn,x
′
1, . . . ,x

′
n′}, and m =

n + n′. Alternatively, linear or polynomial functions can
be used as basis functions. Using this model, Eq. (3) can
be empirically estimated as

Ĵ(α, b) = −
π

n

n∑

i=1

α⊤ϕ(xi)− πb

+
1

n′

n′∑

j=1

ℓ
(
−α⊤ϕ(x′

j)− b
)
+

λ

2
α⊤α,
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where the last term is for regularization. In Eq. (4), the first
two terms are always positive. However, it may happen
in degenerate cases, due to inadequate regularization, that
the first two terms in the above empirical criterion are not
bounded below by zero. To avoid numerical difficulties,
we may in practice constrain these two terms to be non-
negative.

The last remaining choice to obtain a practical algorithm is
the choice of the loss functionℓ(z). We will discuss several
choices in the following section.

4. Convex loss functions for PU classification

In this section, various practical choices of convex loss
functions are explored.

Squared loss: The squared loss, defined asℓS(z) =
1
4 (z − 1)

2, results in the following objective function:

JS(g) = −πE1 [g(x)] +
1

4
EX

[
(g(X) + 1)

2
]

(6)

=
1

4

∫
g(x)2p(x)dx−

1

2

∫
g(x)[2πp1(x)− p(x)]dx+ C,

whereC is an irrelevant constant. Let us assign a class label
y for x according to the difference of class-posteriors:

r(x) = p(y = 1|x)− p(y = −1|x)

= [p(x|y=1)π − p(x|y=−1)(1−π)] /p(x)

= [2πp(x|y = 1)− p(x))] /p(x).

Then our objective function corresponds to the least-
squares fitting of the difference of posteriorsr(x) to a
modelg(x) up to an irrelevant constant:

1

4

∫ (
g(x)−

2πp1(x)− p(x)

p(x)

)2

p(x)dx.

An advantage of this squared-loss formulation is that it can
be analytically solved. For example, whenb is omitted
from the model Eq. (5), the objective function with theℓ2-
regularizer becomes

ĴS(α) =
1

4n′
α⊤Φ⊤

UΦUα+
1

2n′
1
⊤ΦUα

−
π

n
1
⊤ΦPα+

λ

2
α⊤α,

where[ΦP]iℓ = ϕℓ(xi), and[ΦU]jℓ = ϕℓ(x
′
j). The mini-

mizer of this objective function can be analytically obtained
as

α =

(
1

2n
Φ⊤

UΦU + λI

)−1 [
π

n
Φ⊤

P 1−
1

2n′
Φ⊤

U1

]
.

However, a drawback of the squared loss function is that
the function increases asz > 1. This is undesirable, since
a model that correctly classifies the sample whenz > 1 is
penalized.

Logistic loss: The logistic loss is defined asℓLL(z) =
log(1 + exp(−z)). We therefore wish to minimize the ob-
jective function:

JLL (g) = −πE1 [g(X)] + EX [log(1 + exp(g(X)))] .
(7)

The logistic loss is monotone decreasing whenz > 1, so in
this sense it is preferable over the squared loss for classifi-
cation.

The proposed method can be related toordinary logistic
regression. The objective function for ordinary logistic re-
gression is

EX [ℓLL(g(X))] = πE1 [log (1 + exp(−g(X)))]

+ (1− π)E−1 [log (1 + exp(g(X)))] .

We use the identitylog(1 + exp(−z)) = −z + log(1 +
exp(z)) in the first term to get

EX [ℓLL(g(X))] = −πE1 [g(X)]

+ πE1 [log(1 + exp(g(X)))]

+ (1− π)E−1 [log(1 + exp(g(X))] .

By collecting the last two terms intoEX , we see that this
is equivalent to Eq. (7). This implies that ordinary logistic
regression can be exactly performed in the PU classification
setup.

The regularized empirical approximation for the objective
function in Eq. (7) is

ĴLL (α, b) = −
π

n

n∑

i=1

α⊤ϕ(xi)− πb+
λ

2
α⊤α

+
1

n′

n′∑

j=1

ℓLL
(
−α⊤ϕ(x′

j)− b
)
. (8)

This function is continuous and differentiable, therefore
optimization can be performed using a quasi-Newton
method (see Appendix B for details).

Hinge and double hinge losses: The hinge loss is de-
fined asℓH(z) = 1

2 max(0, 1 − z). From Table 1 we see

that the composite loss̃ℓH(z) is not a linear function. This
non-convex composite loss would lead to an undesirable
non-convex optimization problem.

We can, however, obtain a convex objective func-
tion if the loss is slightly modified asℓDH(z) =
max

(
−z,max

(
0, 1

2 − 1
2z
))

. Since this loss function has
an extra kink atz = −1, we refer to it as thedouble hinge
loss(see Fig. 1). For this loss function, the composite loss
term isℓ̃DH(z) = −z, which is a convex function.
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Table 1.A selected list of loss functions and their composite losses. Losses with a linear composite loss function was normalized so that
ℓ̃(z) = −z.

Loss name Notation ℓ(z) ℓ̃(z) Notes

Square loss ℓS(z)
1

4
(z − 1)2 − 1

4
−z Convex

Modified Huber loss ℓMH(z)

{
1

4
max(0, 1− z)2 z ≥ −1

−z z < −1
−z Convex

Logistic loss ℓLL(z) log(1 + exp(−z)) −z Convex

Hinge loss ℓH(z)
1

2
max(0, 1− z)





1

2
(1− z) z ≤ −1,

−z −1 ≤ z ≤ 1,
1

2
(−1− z) z ≥ 1.

Non-convex

Double hinge loss ℓDH(z) max(−z,max(0, 1

2
− 1

2
z)) −z Convex

Perceptron loss ℓP(z) max(−z, 0) −z Convex
Boosting loss ℓEXP(z) exp(−z) exp(−z)− exp(z) Non-convex

The empirical optimization problem for the double hinge
loss is

ĴDH(α, b) = −
π

n

n∑

i=1

α⊤ϕ(xi)− πb+
λ

2
α⊤α

+
1

n′

n′∑

j=1

ℓDH

(
−α⊤ϕ(x′

j)− b
)
. (9)

As in the standard support vector machines, we may rewrite
the minimization of the above criterion as a quadratic pro-
gram by using slack variablesξ to bound the max opera-
tors:

min
α,b,ξ

−π
n1

⊤ΦPα− πb+ 1
n′
1
⊤ξ + λ

2α
⊤α

s.t. ξ ≥ 0,
ξ ≥ 1

21+ 1
2ΦUα+ 1

2b1,
ξ ≥ ΦUα+ b1,

where≥ is applied element-wise on vectors.

5. Discussion

In this section, we discuss the relation between PU classifi-
cation andinlier-based outlier detection(Hido et al., 2008;
Smola et al., 2009).

The objective of inlier-based outlier detection is to find out-
liers in an unlabeled dataset based on an inlier dataset. Re-
garding inliers as samples from the positive class, we can
show that the class-posteriorp(y = 1|x) is proportional to
the ratio of the densities between the positive samples and
unlabeled samples:

p(y = 1|x) ∝
p(x|y = 1)

p(x)
= r(x).

Since the density ratior(x) will tend to take large values
for inliers and small values for outliers, it can be used for
outlier detection.

The density ratior(x) can be naively estimated by first esti-
mating the densitiesp(x|y = 1) andp(x) from the positive

and unlabeled datasets separately and then computing the
ratio of estimated densities. However, this two-step pro-
cedure is undesirable since high-dimensional density esti-
mation is often unreliable and taking their ratio can further
magnify the estimation error. To cope with this problem, in
Keziou (2003) and Nguyen et al. (2007), the following ob-
jective function for density ratio estimation was introduced:

sup
g

∫
g(x)p(x|y = 1)dx−

∫
f∗(g(x))p(x)dx, (10)

wheref(t) is a convex function such thatf(1) = 0, and
f∗(z) = supt tz − f(t) denotes its Fenchel dual. Eq.(10)
is actually a lower bound of thef -divergence fromp(x|y =
1) to p(x) (Ali & Silvey, 1966):

∫
f

(
p(x|y = 1)

p(x)

)
p(x)dx.

Eq.(10) is maximized atg = r if r(x) ∈ ∂f∗(g(x)) (i.e.,
the solution is a function of the density ratio). This esti-
mator has been used for inlier-based outlier detection un-
der the Kullback-Leibler divergence (Kullback & Leibler,
1951) in Smola et al. (2009) and under the Pearson diver-
gence (Pearson, 1900) in Hido et al. (2008).

On the other hand, in PU classification, we are interested in
the sign of the difference of class-posterior probabilities:

p(y = 1|x)− p(y = −1|x) ∝
πp(x|y = 1)

p(x)
−

1

2
, (11)

which also includes the density ratior(x). Thus, inlier-
based outlier detection and PU classification are highly re-
lated to each other. However, an important difference is
that inlier-based outlier detection requires an outlier score
for evaluating the outlyingness of samples, while PU clas-
sification requires the threshold between the positive and
negative classes. Because of this difference, Eq.(11) also
contains the class prior probabilityp(y = 1) = π.

Nevertheless, we can utilize the density-ratio framework
of f -divergence estimation in PU classification. Indeed,
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Table 2.Conjugates and the corresponding loss function for PU
learning (cf. Table 1).

f̄(t) f̄∗(z) Loss

(t− 1

2
)2 1

4
(z + 1)2 − 1

4
ℓS(z)

(t− 1

2
)2, 0 ≤ t ≤ 1

{
1

4
max(0, 1 + z)2− 1

4
z ≤ 1

z − 1

4
z > 1

ℓMH(z)

|2t−1|, 0 ≤ t ≤ 1 max
(
z,max

(
0,1

2
+ 1

2
z
))
− 1

2
ℓDH(z)

(1− t) ln(1− t)
+t ln(t)

ln(1 + exp(z)) ℓLL(z)

Eq. (4) can be expressed as

sup
g

π

∫
g(x)p(x|y = 1)dx−

∫
f̄∗(g(x))p(x)dx,

(12)

where f̄∗(t) corresponds to the loss function. Note that
Eq.(12) is an upper bound of

∫
f̄

(
θp(x|y = 1)

p(x)

)
p(x)dx.

For differentf̄(t), we can recover the squared loss, mod-
ified Huber loss, double hinge loss and logistic loss, as
shown in Table 2.

6. Theoretical Analysis

In this section, we establish convergence results for the pro-
posed methods. Assume that the number of basis func-
tionsm is a constant independent ofn andn′, i.e., g(x)
is parametric, and the biasb is ignored for simplicity:
g(x) =

∑m
j=1 αjϕj(x) = α⊤ϕ(x). Assume that the ideal

estimates are given by

α∗
S = argmin JS(α),

α∗
LL = argmin JLL (α),

α∗
DH = argmin JDH(α),

respectively, where we plugg(x) into the original objec-
tivesJS(g), JLL (g) andJDH(g). We also assume that the
empirical estimates are given by

α̂S = argmin ĴS(α),

α̂LL = argmin ĴLL (α),

α̂DH = argmin ĴDH(α).

We then derive convergence rates of the empirical estimates
and the empirical objectives based on a theory known as
perturbation analysis of optimization problems(see Bon-
nans & Shapiro, 1998; Bonnans & Cominetti, 1996, and
references therein).

Our main idea is to regard three empirical objectives as
perturbed optimizations of three expected objectives, and
to establishLipschitzian behaviorof optimal solutions to
the perturbed optimizations. Without loss of generality, as-
sume that0 ≤ ϕj(x) ≤ 1 for all j = 1, . . . ,m andx ∈ R,
and that there exists a constantMα such that‖α̂‖2 ≤ Mα

for the optimal solution̂α to any optimization ifα⊤α is
regularized. To begin with, we have the following second-
order growth conditions.

Lemma 2. It holds that

JS(α) ≥ JS(α
∗
S) + λ‖α−α∗

S‖
2
2,

JLL(α) ≥ JLL(α
∗
LL) + λ‖α−α∗

LL‖
2
2,

JDH(α) ≥ JLL(α
∗
DH) + λ‖α−α∗

LL‖
2
2.

First, consider the squared loss. Letu = {u1,u2,u3 |
u1 ∈ Sm

+ ,u2 ∈ R
m,u3 ∈ R

m} be a set of perturbation
parameters, whereSm

+ ⊂ R
m×m is the cone ofm-by-m

positive semi-definite matrices. Define our perturbed ob-
jective function by

JS(α,u) =
1

4
α⊤

(∫
ϕ(x)ϕ(x)⊤p(x)dx+ u1

)
α

+
1

2

(∫
ϕ(x)p(x)dx+ u2

)⊤

α

− π

(∫
ϕ(x)p1(x)dx+ u3

)⊤

α+
λ

2
α⊤α,

αS(u) = argminα JS(α,u).

It is obvious thatJS(α) = JS(α,0), and ĴS(α) =
JS(α,u), where

u1 =
1

n′

n′∑

i=1

ϕ(x′
i)ϕ(x

′
i)

⊤ −

∫
ϕ(x)ϕ(x)⊤p(x)dx,

u2 =
1

n′

n′∑

i=1

ϕ(x′
i)−

∫
ϕ(x)p(x)dx,

u3 =
1

n

n∑

i=1

ϕ(xi)−

∫
ϕ(x)p1(x)dx. (13)

Lemma 3. The difference functionJS(·,u)− JS(·) is Lip-
schitz continuous modulusω(u) = O(‖u1‖Fro + ‖u2‖2 +
‖u3‖2) on a sufficiently small neighborhood ofα∗

S.

Theorem 4. Asn, n′ → ∞, we have

‖α̂S−α∗
S‖2 = Op(n

−1/2 + n′−1/2),

|ĴS(α̂S)− JS(α
∗
S)| = Op(n

−1/2 + n′−1/2).

Second, consider the logistic loss. LetU be a Banach space
of Lipschitz continuous functionsu : Rm 7→ R equipped
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with a sup-norm‖u‖∞ = supα |u(α)|. Letu = {u3, u4 |
u3 ∈ R

m, u4 ∈ U} be a set of perturbation parameters,
and define our perturbed objective functional by

JLL (α,u) = −π

(∫
ϕ(x)p1(x)dx+ u3

)⊤

α

+

∫
ln(1 + exp(ϕ(x)⊤α))p(x)dx+ u4(α) +

λ

2
α⊤α,

αLL (u) = argminα JLL (α,u).

It is not difficult to see thatJLL (α) = JLL (α,0) where
0 ∈ U , andĴLL (α) = JLL (α,u) where

u3 =
1

n

n∑

i=1

ϕ(xi)−

∫
ϕ(x)p1(x)dx,

u4(α) =
1

n′

n′∑

i=1

ln(1 + exp(ϕ(x′
i)

⊤α))

−

∫
ln(1 + exp(ϕ(x)⊤α))p(x)dx.

(14)

Lemma 5. The difference functionJLL(·,u)−JLL(·) is Lip-
schitz continuous modulusω(u) = O(‖u3‖2 + Lip(u4))
on a sufficiently small neighborhood ofα∗

LL, whereLip(u4)
is the best Lipschitz constant ofu4.

Theorem 6. Asn, n′ → ∞, we have

‖α̂LL −α∗
LL‖2 = Op(n

−1/2 + n′−1/2),

|ĴLL(α̂LL)− JLL(α
∗
LL)| = Op(n

−1/2 + n′−1/2).

Finally, consider the double hinge loss. Here we use a sim-
ilar set of perturbation parametersu = {u3, u5} as the
logistic loss, and define our perturbed objective functional
by

JDH(α,u) = −π

(∫
ϕ(x)p1(x)dx+ u3

)⊤

α

+

∫
max

{
0,

1 +ϕ(x)⊤α

2
,ϕ(x)⊤α

}
p(x)dx

+ u5(α) +
λ

2
α⊤α,

αDH(u) = argminα JDH(α,u).

It is easy to see thatJDH(α) = JDH(α,0) where0 ∈ U ,
andĴDH(α) = JDH(α,u) where

u3 =
1

n

n∑

i=1

ϕ(xi)−

∫
ϕ(x)p1(x)dx, (15)

u5(α) =
1

n′

n′∑

i=1

max

{
0,

1 +ϕ(x′
i)

⊤α

2
,ϕ(x′

i)
⊤α

}

−

∫
max

{
0,

1 +ϕ(x)⊤α

2
,ϕ(x)⊤α

}
p(x)dx.

Lemma 7. The difference functionJDH(·,u) − JDH(·)
is Lipschitz continuous modulusω(u) = O(‖u3‖2 +
Lip(u5)) on a sufficiently small neighborhood ofα∗

DH.

Theorem 8. Asn, n′ → ∞, we have

‖α̂DH −α∗
DH‖2 = Op(n

−1/2 + n′−1/2),

|ĴDH(α̂DH)− JDH(α
∗
DH)| = Op(n

−1/2 + n′−1/2).

To sum up, the empirical estimates and the empirical objec-
tives converge inOp(n

−1/2+n′−1/2) to the corresponding
targets in all of three cases. This is the optimal convergence
rate, since it is of orderOp(n

−1/2) when approximating
an expectation by an empirical average based onn data.
Note that there is a generalization error bound in du Plessis
et al. (2014) that is also of orderOp(n

−1/2 + n′−1/2) un-
der the problem setting of PU classification. Nevertheless,
their proposed method is non-convex and has no conver-
gence analysis. As a consequence, our proposed methods
are advantageous because they possess both bounds of the
convergence rate and generalization error.

7. Experiments

In this section we report experimental results.

Numerical illustrations: We numerically illustrate the
effect of multiple local minima for the ramp loss on a sim-
ple numerical problem. The two class-conditional distribu-
tions are

p(x|y=1) = Nx

(
2, 12

)
and p(x|y=−1) = Nx

(
−2, 12

)
,

whereN (µ, σ2) denotes the univariate normal distribution
with meanµ and varianceσ2. We generate10 positive
samples and, using a class prior ofπ = 0.5, generate20
unlabeled samples. Using a modelg(x) = wx + b, and
choosingλ = 10−3 we plot the value of the objective func-
tion w.r.t. tow andb in Fig. 2. Even in this simple problem,
we see that the ramp loss function has multiple minima. We
see in Fig. 3 that the bad local minimum leads to a worse
classification result.

Next, we illustrate the failure of applying ordinary clas-
sifiers in the PU learning problem due to the superfluous
penalty term. The positive and negative classes are dis-
tributed asU(0.1, 1) andU(−1.1,−0.1), whereU(a, b) is
the uniform density betweena andb. This dataset is triv-
ially separable and the offset−b/w of a classifier should
always be in the range[−0.1, 0.1]. Drawing different
datasets and training classifiers on it gives the results in
Fig. 4. In this simple example, we see that directly using
the hinge loss and logistic loss result in a wrong classifi-
cation boundary – even in fully separable datasets. Our
proposed method and the ramp loss yield correct solutions.
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Figure 2.Objective value of the ramp loss
w.r.t. w and b, illustrating multiple lo-
cal minima. The objective value forP1 is
higher thanP2.
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Figure 3.Resulting discriminant bound-
ary for the ramp loss minimaP1 andP2

and the double hinge loss.P1 (with a
higher value) is an inferior classifier.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

 

 

LogReg

C−LL

Hinge

C−DH

Ramp

True class-prior

-b
/w

Figure 4.Average offset−b/w for dif-
ferent classifiers trained on the fully-
separable problem. Correct classifiers
should be between -0.1 and 0.1.
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Figure 5.Average execution time of different methods

Benchmark datasets: We performed experiments illus-
trating the method on the MNIST dataset. The following
methods were compared:

• LogReg, Hinge: Training a weighted classifier with
the logistic loss and the hinge loss. These methods are
convex, but subject to the superfluous penalty.

• C-LL , C-DH (proposed): The convex methods pro-
posed in Sec. 4 using the logistic loss and double hinge
loss.

• Ramp: The method of du Plessis et al. (2014) us-
ing the non-convex ramp loss. The objective function
was minimized using the convex-concave procedure
(Yuille & Rangarajan, 2002; Collobert et al., 2006)
(see Appendix B.4 for a detailed discussion).

All methods used the same model. Hyperparameters were
selected via cross-validation on the zero-one loss objective
in Eq. (2). The “0" digit was used for the positive class,
and another digit was used for the negative class (i.e., one
dataset for each digit “1". . . “9"). Dimensionality was re-
duced to2 via principal component analysis and200 posi-
tive samples and400 unlabeled samples were drawn. The
class prior was varied across experiments, but it is assumed
that the class prior is known at training time6.

The classification accuracy is given in Table 3. From this
we, see that the ramp-loss and the proposed double hinge
loss give accurate results. The comparison in average com-
putational time (Fig. 5) shows however that our proposed
double hinge loss method is significantly faster.

6In practice, it may be estimated with methods such as (Blan-
chard et al., 2010; du Plessis & Sugiyama, 2014).

Table 3.Classification accuracy (in percent) of the proposed
methods. Best and equivalent methods (under5% t-test) are bold.

Dataset π LogReg C-LL Hinge C-DH Ramp
0 vs 1 0.1 3.1% 0.8% 0.7% 0.5% 0.5%

0.4 8.9% 1.3% 1.6% 0.9% 0.8%
0.7 8.8% 1.5% 1.8% 0.6% 1.0%

0 vs 2 0.1 4.2% 3.0% 3.1% 2.8% 2.7%
0.4 11.8% 6.0% 7.4% 5.3% 5.3%
0.7 11.2% 6.9% 7.6% 5.1% 5.4%

0 vs. 3 0.1 4.1% 2.7% 2.9% 2.5% 2.5%
0.4 11.9% 5.8% 7.4% 5.1% 5.1%
0.7 11.3% 6.9% 7.5% 5.1% 5.4%

0 vs 4 0.1 3.7% 1.8% 2.1% 1.6% 1.4%
0.4 10.8% 3.9% 5.0% 2.8% 2.5%
0.7 10.2% 4.4% 5.3% 2.7% 2.8%

0 vs 5 0.1 5.0% 4.1% 4.4% 4.0% 3.9%
0.4 14.4% 9.4% 11.5% 9.4% 9.3%
0.7 13.4% 11.1% 13.2% 10.5% 10.0%

0 vs 6 0.1 4.1% 3.1% 3.1% 2.9% 2.8%
0.4 11.6% 6.4% 7.8% 5.9% 5.8%
0.7 11.6% 7.1% 7.8% 6.0% 6.1%

0 vs 7 0.1 3.7% 2.0% 2.2% 1.7% 1.5%
0.4 10.4% 4.0% 4.9% 3.0% 2.8%
0.7 10.2% 5.0% 5.0% 2.8% 3.1%

0 vs 8 0.1 4.0% 2.8% 2.8% 2.6% 2.6%
0.4 11.4% 5.8% 6.9% 5.1% 5.0%
0.7 10.8% 6.4% 7.9% 5.3% 5.3%

0 vs 9 0.1 4.0% 2.7% 2.9% 2.5% 2.4%
0.4 11.1% 4.8% 5.7% 4.1% 4.0%
0.7 10.5% 5.3% 5.8% 3.8% 3.9%

8. Conclusion

We discussed a convex framework for learning from posi-
tive and unlabeled data. Theoretically, it was shown that the
proposed estimators converge to the optimal solutions at
the optimal parametric rate. Experimentally it was shown
that PU classification with the proposed double hinge loss
perform as accurate as the non-convex ramp-loss method,
but with a much lower computational burden. Furthermore,
we related the convex PU learning framework to severalf -
divergence estimation based PU learning methods.
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