Semi-Supervised Learning of Class Balance
under Class-Prior Change by Distribution Matching

CHRISTO@SG.CS.TITECH.AC.JP
SUGI@CS.TITECH.AC.JP

Marthinus Christoffel du Plessis
Masashi Sugiyama

Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan

Abstract

In real-world classification problems, the class
balance in the training dataset does not necessar-
ily reflect that of the test dataset, which can cause
significant estimation bias. If the class ratio of
the test dataset is known, instance re-weighting

However, the class ratio in the test dataset is often unknown
in practice. A possible approach to coping with this prob-
lem is to learn a classifier so that the performance for all
possible class balances is improved, e.g., through maxi-
mization of the area under the ROC cur@(tes & Mohrj

2004 Clemencon et al2009. Another, possibly more di-

rect approach is to estimate the class ratio in the test dataset

or resampling allows systematical bias correc-
tion. However, learning the class ratio of the
test dataset is challenging when no labeled data
is available from the test domain. In this paper,
we propose to estimate the class ratio in the test
dataset by matching probability distributions of
training and test input data. We demonstrate the
utility of the proposed approach through experi-
ments.

and use the estimates for instance re-weighting or resam-
pling. In this paper, we focus on the latter scenario under
a semi-supervised learning setuph@pelle et a). 20086,
where no labeled data is available from the test domain.

Saerens et af2007) is a seminal paper on this topic, which
proposed to estimate the class ratio by the expectation-
maximization (EM) algorithm Pempster et al. 1977)—
alternately updating the test class-prior and class-posterior
probabilities from some initial estimates until conver-
gence. This method has been successfully applied to var-
ious real-world problems such as word sense disambigua-
tion (Chan & Ng 2006 and remote sensindLétinne et al,

Most supervised learning algorithms assume that train2009).

ing and test data follow the same probability distribution |, this paper, we first reformulate the above algorithm,
(Vapnik 1998 Hastie etal. 2001 Bishop 200§. How-  and show that this actually corresponds to approximat-
ever, this de facto standard assumption is often violateghg the test input distribution by a linear combination of
in real-world problems, caused by intrinsic sample selecgjass.-wise input distributions under the Kullback-Leibler
tion bias or inevitable non-stationarityi¢ckman 1979 (k| ) divergence Kullback & Leibler, 1951). In this pro-
Quinonero-Candela et 22009 Sugiyama & Kawanahe  cedure, the class-wise input distributions are approximated
2012. via class-posterior estimation, for example, by kernel logis-

In classification scenarios, changes in class balance are di¢ regressioniastie et al.200 or its squared-loss vari-
ten observed—for example, the male-female ratio is almos@nt Sugiyama2010.

fifty-fifty in the real-world (test set), whereas training sam- This new formulation motivates us to develop a new ap-
ples collected in a research laboratory tends to be domigroach, since indirectly estimating the divergence by esti-
nated by male data. Such a situation is calletsas-prior  mating the individual class-posterior distributions may not
change and the bias caused by differing class balances cafe the best scheme. Recently, KL divergence estimation
be systematically adjusted by instance re-weighting or repased ordirect density-ratio estimatiohas been shown to
sampling if the class balance in the test dataset is knowge promising Klguyen et al.201Q Sugiyama et a]2008.
(Elkan, 200% Lin et al, 2003). Furthermore, a squared-loss variant of the KL divergence
called the Pearson (PE) divergendeeérson 1900 can
also be approximated in the same way, with an analytic
solution that can be computed efficientiignamori et al.

1. Introduction

Appearing inProceedings of th&9*" International Conference
on Machine LearningEdinburgh, Scotland, UK, 2012. Copyright
2012 by the author(s)/owner(s).
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20093. The PE divergence and the KL divergence bothbe-  asp(y) = n,/n, wheren,, is the number of training
long to thef-divergence clasd\i & Silvey, 1966 Csisar, samples in clasg. Set the initial estimate of the test
1967, which share similar properties. In this paper, with class-posterior probability equal to fi;, (y) = p(y).

the aid of this density-ratio based PE divergence estimator,
we propose a hew semi-supervised method for estimating
the class ratio in the test dataset. Through experiments, we  (a) Compute a new test class-posterior estimate
demonstrate the usefulness of the proposed method. P} (y|x) based on the current test class-prior es-

timatep,_,(y) as

3. Repeat until convergence=1,2,...

2. Problem Formulation and Existing Method 5L ()plz)/p(y)

D (y|lz) = == — —. (2
In this section, we formulate the problem of semi- Pilul) > g1 P ()P |2) /DY) @)
supervised class-prior estimation and review an existing . )
method Gaerens et 41200). (b) Compute a new test class-prior estim@iéy)
based on the current test class-prior estimate

e
2.1. Problem Formulation Pi(ylx) as

Let x € R? be the d-dimensional input datay € ~, I,

{1,...,¢} be the class label, and be the number of Pily) = ﬁZpt(y\:vi). ©)
classes. We consider class-prior change, i.e., the class- =1

prior probability for training data(y) and that for testdata ;g procedure was shown to converge to a local optimal
p'(y) are different. However, we assume that the classyqytion.

conditional density for training daj& z|y) and that for test

datap’ (z|y) are the same: Note that EqZ) comes from the Bayes formulae,
p(zly) = p'(ly). W plaly) = LY@ g gy = PP (@)
p(y) P (y)

Note that training and test joint densitiegx,y) and
P’ (z,y) as well as training and test input densitjgs)
andp’(x) are generally different under this setup.

combined with EqJ):

/
P le) x L)
The goal of this paper is to estimaté(y) from labeled p(y)
training sampleq(z;, y;)};—, drawn independently from  Eq.3) comes from empirical marginalization of
p(z,y) and unlabeled test samplé¢s/};” , drawn inde-
pendently fronp’ (z). Given test labelgy/}" ,, p'(y) can Py) = /P'(y|w)l?/(w)d-’ﬂ-
be naively estimated by, /n’, wheren; is the number of
test samples in clagg Here, however, we would like to

, 3. Reformulation of the EM Algorithm as
estimatep’ (y) without {y/};"_,.

Distribution Matching

2.2. Existing Method In this section, we show that the above EM algorithm can
be interpreted as matching the test input density to a lin-

We give a brief overview of an existing method for semi- o5 compjination of class-wise input distributions under the
super\/_lsed class-prior estlmat!OISe(ere'ns.et "’_”'200])’ Kullback-Leibler (KL) divergence Kullback & Leibler,
which is based on the expectation-maximization (EM) al-1951)_
gorithm Dempster et al.1977).

Based on the assumption that the class-conditional densi-

In theA;aIgorithrrl; test cIas;—prio_r and class-posterior e.stiﬁes for training and test data are unchanged (seelEq.(
matesp’(y) andp’(y|x) are iteratively updated as follows: let us model the test input density(z) by

1. Obtain an estimate of the training class-posterior ron - 0 4
probability, 5(y|z), from training data{ (z;, y;)}"_. ¢ (@) =3 Oyp(@ly), (4)
for example, by Kkernel logistic regression v=1

(Hastie etal. 200) or its squared-loss variant whered, is a coefficient corresponding t(y):
(Sugiyama2010.

2. Obtain an estimate of the training class-prior probabil- Z by = 1. (5)
ity, p(y), from the labeled training datg(x;,y;)};, y=1
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We match the modef () with the testinput density’(x)  Therefore, the EM method is essentially equivalent to

under the KL divergence: matching the training and test input distributions under the
, KL divergence, which uses the class-conditional density
KL/||f) = /p/<w) log Pl(fﬂ)dw p(x]y) as a building block (see EG)). However, this fact
¢ () is not apparent in the EM expression because of the cancel-
, , lation of p(x}) in the numerator and denominator.
= [ p'(@)logp'(w)dx

The convexity of Eq.) implies that there are no local min-
, ° ima. However, this was not recognized $aerens et al.
- /p (x) log (Z gyp(my)> dz. (6) (2007) since the algorithm was derived via the incomplete
v=t data EM method.

Ignoring the first term (which is a constant) and approxi-

mating the expectation in the second term with its empirical4, Class-Prior Estimation by Direct
average give the following optimization problem: Divergence Minimization

The analysis in the previous section motivates us to explore
e Zlog <Z 0yp(2;|y) ) (7)  amore direct way to learn coefficienfs, }¢_,. That s,
given an estimator of a divergence frgshto ¢/, coeffi-
subject to Eq ). .cien.ts'{ey}gz1 are learned so that the divergence estimator
is minimized.
Since the above maximization is a convex optimiza-
tion problem, the Karush-Kuhn-Tucker (KKT) con-
ditions are necessary and sufficient for optimality
(Boyd & Vandenberghe2004). The KKT conditions for
the above problem is given by Ef)@nd

In this section, we first review a general frame-
work of approximating thef-divergencegAli & Silvey,
1966 Csisar, 1967 via Legendre-Fenchel convex duality
(Kezioy, 2003 Nguyen et al.2010. Then we review two
specific methods of divergence estimation for the KL di-
vergence and the Pearson (PE) divergeRea(son1900.
Z p =v, Yy=1,...,c Finally,_vx{e propose t(_) use the PE divergence estimator for
2 y—1? |y ) determining the coefficient§, }¢_, .

wherev is a Lagrange multiplier. From these equations, we, 4 Framework of f-Divergence Approximation
can determine as

An f-divergenceAli & Silvey, 1966 Csisar, 1967 from
p’ to ¢’ is a general divergence measure defined by a convex
function f such thatf(1) = 0 as

y:l-V=<§_:10y>' Zz/lup( i)
e oot (L@ g

( ’\y )
It was shown that th¢'-divergence can be lower-bounded
Then the solutior{d, }¢_, can be calculated by fixed-point ViaLegendre-Fenchel convex dualifockafellar 1970 as

iteration as followsKicLachlan & Krishnan1997: follows (Keziou 2003 Nguyen et al.2010:
0 8 Z _ vy ) g Dy(p'llq') = max [/ ¢ (@)r(z)dz
Y Y Zy 1 yp ‘y)

Making the substitutiorp(x}|y) = p(y|xi)p(xl)/p(y),
cancelingp(x}) in the numerator and denominator, and re-
placing p(y|x) with p(y|x), we can show that the above Wheref* is the convex conjugate of. The maximum is

updating formula is reduced to achieved if and only ifr(z) = ¢'(z)/p'(z). Eq.Q) is a
useful expression because the rlght hand side only contains

expectations of- and f*(r(x)), which can be simply ap-
proximated by sample averages.

- / ﬁ(w)f*(r(w))dw], )

6, — ~ Z yp (yl=})/Py)
< >y =1 Oy DY |2) /DY)
Below, we show specific methods of divergence approx-

which is the same as E@)(with Eq.(2) substituted. imation for the KL and PE divergences under modgl (
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and the following parametric expression of the density ra4.3. PE-Divergence Approximation

tio : . . .
r(@) As an alternative to the KL-divergence, let us consider the

PE divergence defined by

pele) = 5 [ (28 1) p@ae,  an

b
r(x) = Z appe(x), (10)
=0

where {a,}%_, are parameters ango,(x)}5_, are basis

functions. In practice, we use a constant basis and Gaussian =~ ) . )
kernels centered at the training data points, i.e.bfer n which is a squared-loss variant of the KL divergence and is

andf=1.2.....n a f-divergence withf (u) = (t — 1)2/2.
|z — @2 For this f, the convex conjugate is given by (v) =
@o(x) =1 and o(x) = exp <—%2) : v?/2+v. Then, an empirical approximation of Eg) inder

. . . . . (4) and (LO) is gi foll i et al.20093:
This provides a non-parametric divergence estl-()an (0 is given as followsKanamori et al 3

mator (Nguyenetal. 201Q Sugiyamaetal. 2008 1 N - 1
Kanamori et al.2012. PE(p¢') ~ max [ ~ 5o Gata HO - 2] ,
4.2. KL-Divergence Approximation where

With f(u) = —logwu for u > 0 and+oco for v < 0, the Lo

f-divergence is reducgd tg the KL divergence. For this a=ap o - ab}T , G=— Zﬂp(wé)w(wﬁ)T,
the convex conjugate is given i (v) = —1 — log(—v) no=

for v < 0 and+oo for v > 0. Then, if —«y is regarded —~ [~ ~
asay, an empirical approximation of E§)Yunder @) and p(@) = [po(@) pr(z) - @u(a)], H = {hl hC} ,
(10) is given as followsKlguyen et al.2010: ~ 1

hy = — > p(mi), 0=1[01 0, - 0] .

c b S
S S ae) i
y=1""Y

iry; =y £=0 A regularized solution to the above maximization problem

KL(p'||¢") ~ {mabx

sty

1 b can be obtained analytically as
+H210g <Za5gpg(m§)> +1], R R o
i=1 £=0 o= (G + /\R) HO, (12)
subject toag, a1, ..., ap > 0. A similar approach, which

directly estimates the inverted ratid(z)/q' (=) with the  where\ is a positive constant anR is defined as
same modelX0), is also known $ugiyama et al2008:

' b R— [ 0 Oixp }
1 ¢ =10 I :
KL(p/Hq/) A~ max [ g log ( E Oézspe(g};)> ], bx1 bxb

b !
toekicy |51 £=0 The PE divergence estimator obtained above was proved
subject tonyg, g, ..., > 0 and to have superior convergence properties both in parametric
c b and non-parametric setup§gnamori et al.2009a 2012.
Zi@/ Z Zaew(wi) - 1. Tuning parameters possibly included in the pasis func-
y=1 " =y =0 tion such as the kernel width or the regularization param-

eter can be systematically optimized by cross-validation
These are convex optimization problems, and thus globalKanamori et al.2009a 2012.
optimal solutions can be obtained by naive optimization.
Tuning parameters possibly included in the basis func4.4. Learning Class Ratios by PE Divergence Matching
tion such as the kernel width can be systematically op- }
timized by cross-validationSugiyama et a).2008. The AS shown above, the KL and PE divergences can be
KL-divergence estimator obtained above was proved tgystematically estimated Wlth(_)ut density estimation via
possess superior convergence properties both in park€9endre-Fenchel convex duality. Among them, the PE di-
metric and non-parametric setupBugiyama et a).200§  Vergence estimator, explicitly expressed as
Nguyen et al.2010. - - 1 1
L 127 A ~ (A

PE):= 30 H (G + AR) G (G + AR) Ho

—~ ~ -1 _— 1
+oTHT (G n /\R) Ho -,

However, computing the KL-divergence estimator is rather
time-consuming because optimization{ef, }%_, needs to
be carried out for eacfy, };_;.
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is more useful for our purpose of learning class ratios, Table 1.Datasets used in the experiments.
because of the following reasons: The PE-divergence paiaset d #samples #positves # negatives
was shown to be more robust against outliers than Australian 14 690 307 383

the KL-divergence, based on power divergence analysis Diabetes 8 768 500 268
(Basu et al. 1998 Sugiyama et a).2012. This is a use- German 24 1000 300 700

ful property in practical data analysis suffering high noise ISO Eﬂzg?f re 34 4%521 ggg igg

and outliers. Furthermore, the above PE-divergence esti- Tyonorm 20 7400 3697 3703

mator was shown to possess the minimum condition num-
ber among a general class of estimators, meaning that it is
the most stable estimatdkénamori et al.20090). e KL-DR : The proposed method (see Seciod) using

a KL divergence estimator based on the density ratio
(DR). For the optimization, the L-BFGS with projec-
tion implementation ‘minFuncBC’ is use&¢hmidt
2005.

Another, and practically more important advantage of the

above PE divergence estimator is that it can be computed
efficiently and analytically. This advantage is even more

crucial in our case because we minimize the above PE di-
vergence estimator with respect@o

- PE(0 e PE-DR: The proposed method (see Sectibd) using
mn (6) the PE divergence estimator based on DR.

(&
subject toz 0, =1 andfy,...,0. > 0.
y=1 Below, we compare accuracy of class-prior estimation and
classification.
BecauséSE(O) is given analytically as a function &, we
can easily obtain the minimizét by simple optimization 5.2. Benchmark Datasets
strategies such as alternate gradient descent and projecti%re' we use binary-classification benchmark datasets

orjusta grld search, without re-computing the PE OIIVer'listed in Tablel. We select 10 samples from each of the
gence estimator. two classes for the training dataset and 50 samples for the

test dataset. The samples in the test set are selected with
5. Experiments probability 6* from the first class andl — 6*) from the

. . . second class, whefg = 0.1,0.2,0.3,0.4,0.5.
In this section, we report experimental results.

The average squared error of the estimated class ratios are

5.1. Setup given in Figurel. This shows that methods based on the
o KL and PE divergences overall outperform EM-KLR, im-
The following five methods are compared: plying that our reformulation of the EM algorithm as dis-

tribution matching (see Secti®) contributes to obtaining
e EM-KLR : The method ofSaerens et a[2001) (see accurate class-ratio estimates. Among the KL-based meth-
Section2.2). The class-posterior probability of the ods, KL-KDE tends to perform better than KL-DR. This
training dataset is estimated usifgpenalized ker- is because, in KL-KDE, we did not estimate the first term
nel logistic regression with Gaussian kernels. Thein Eq.(), which is the negative entropy and is a constant.
L-BFGS quasi-Newton implementation included in On the other hand, the negative entropy is also implicitly
the ‘minFunc’ package is used for logistic regressionestimated in KL-DR, possibly incurring additional estima-
training (Schmidt 2005. tion error. Among the PE-based methods, PE-DR outper-
. ] forms PE-KDE, showing that directly estimating density
o KL-KDE : The KL divergence estimator based on ker- ratins without density estimation is more promising as a

nel density estimation (KDE). The class-wise input pg givergence estimator. Overall, PE-DR is shown to be
densities are estimated by KDE with Gaussian ker{ne most accurate.

nels. The kernel widths are estimated using likelihood -
cross-validation$ilverman 1986). Next, we compare classification accuracy when the learned

class-prior probabilities are used as instance weights. Fig-
e PE-KDE: The PE divergence estimator based onure?2 shows misclassification rates for a regularized least-
KDE. The class-wise input densities are estimatedsquares classifieR(fkin et al, 2003 with instance weight-
by KDE with Gaussian kernels. The kernel widths ing. The results show that, as expected, a more accurate
are estimated using least-squares cross-validatiopstimate of the class ratio tends to give a lower misclassifi-
(Silverman 1986). cation rate.
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Figure 1.Average squared error between the true class édtiand estimated class ratfofor the benchmark datasets listed in Table
The best method and comparable methods according to the t-test at significance level of 5% are indicated with a
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Figure 2. Average misclassification rates for the datasets listed in TaliB#assification is performed using a regularized least-squares
classifier with instance weighting. The best method and comparable methods according to the t-test at significance level of 5% are
indicated with a¢’.

5.3. Real-World Application evitable because the type of vehicles passing through dif-

Finally, we demonstrate the usefulness of the proposed ag?rs depending on time (e.g., day and night).

proach in a real-world problem of military vehicle classi- n samples are drawn from each of the labeled classes for
fication from geophone recording®arte & Hy 2004.  the training set with the uniform class prior, wherd&8

This is a three class problem: Two vehicle classes and aamples are drawn with probabilitigs= [0.6 0.1 0.3] from
class of recorded noise. The features Zalimensional. each of the classes for the test set. Due to the prohibitive
In this vehicle classification task, class-prior change is incomputational cost, KL-DR was not included in this exper-
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iment. Boyd, S. and Vandenberghe, LConvex Optimizatian

In Figure3, we plot thels-distance between the true and es- Cambridge University Press, New York, N, USA, 2004.

timated class priors and the misclassification rate based 983 v, S. and Ng, H. T. Estimating class priors in domain
instance-weighted kernel logistic regressitfagtie et al. adaptation for word sense disambiguation.Phoceed-

200]) averaged ovet000 runs as functions of the num- g5 of the 21st International Conference on Computa-
ber of training samples. As can be seen from the graphs, tjonaj Linguistics pp. 89-96, 2006.

the performance of all methods improves as the number of

training samples increases. Among the compared methodghapelle, O., Sdbikopf, B., and Zien, A. (eds.).Semi-
PE-DR provides the most accurate estimates of the class Supervised Learning MIT Press, Cambridge, MA,
prior and thus yields the lowest classification error. USA, 2006.

Clemencon, S., Vayatis, N., and Depecker, M. AUC op-
timization and the two-sample problem. Advances

Class-prior change is a problem that is conceivable in many in Neural Information Processing Systems pp. 360

real-world datasets, and it can be systematically corrected 368. 2009.

for if the class-prior of the test dataset is known. In this

paper, we discussed the problem of estimating the test cla

ratios under the semi-supervised learning setup.

6. Conclusion

Lortes, C. and Mohri, M. AUC optimization vs. error rate
minimization. InAdvances in Neural Information Pro-

cessing Systems 1@l T Press, Cambridge, MA, 2004.
We first showed that the EM-based estimator introduced in

Saerens et a(200]) can be regarded as indirectly match- Csisar, |. Information-type measures of difference of
ing the test input distribution by a linear combination probability distributions and indirect observatiostu-
of class-wise input distributions. Based on this view, dia Scientiarum Mathematicarum Hungaric&:229—
we proposed to use an explicit and possibly more accu- 318, 1967.

rate divergence estimator based on density-ratio estimation

(Kanamori et al.20093 for learning test class-priors. The Dempster, A. P, Laird, N. M., and Rubin, D. B. Maximum
proposed method was shown to have various nice proper- likelihood from incomplete data via the EM algorithm.
ties such as high robustness to noise and outliers, superior Journal of the Royal Statistical Society, serigs38(1):
numerical stability, and excellent computational efficiency. 1-38,1977.

Through experiments, we showed that the class ratios es
mated by the proposed method are more accurate than co
peting methods, which can be translated into better classi-
fication accuracy.

:ﬁ_uarte, M. F. and Hu, Y. H. Vehicle classification in dis-
tributed sensor networksJournal of Parallel and Dis-
tributed Computing64(7):826—838, 2004.
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