
JMLR: Workshop and Conference Proceedings 30:1–16, 2015 ACML 2015

Continuous Target Shift Adaptation in Supervised Learning

Tuan Duong Nguyen ntduong268@gmail.com

Tokyo Institute of Technology, Tokyo, 152-8550, Japan.

Marthinus Christoffel du Plessis christo@ms.k.u-tokyo.ac.jp

Masashi Sugiyama sugi@k.u-tokyo.ac.jp

The University of Tokyo, Tokyo, 113-0033, Japan.

Abstract

Supervised learning in machine learning concerns inferring an underlying relation between
covariate x and target y based on training covariate-target data. It is traditionally assumed
that training data and test data, on which the generalization performance of a learning al-
gorithm is measured, follow the same probability distribution. However, this standard
assumption is often violated in many real-world applications such as computer vision, nat-
ural language processing, robot control, or survey design, due to intrinsic non-stationarity
of the environment or inevitable sample selection bias. This situation is called dataset shift
and has attracted a great deal of attention recently. In the paper, we consider supervised
learning problems under the target shift scenario, where the target marginal distribution
p(y) changes between the training and testing phases, while the target-conditioned covari-
ate distribution p(x|y) remains unchanged. Although various methods for mitigating target
shift in classification (a.k.a. class prior change) have been developed so far, few methods
can be applied to continuous targets. In this paper, we propose methods for continuous
target shift adaptation in regression and conditional density estimation. More specifically,
our contribution is a novel importance weight estimator for continuous targets. Through
experiments, the usefulness of the proposed method is demonstrated.

Keywords: Target shift, importance weighting, L2-distance

1. Introduction

The objective of supervised learning is to infer the underlying relation between covari-
ate (input, predictor) x and target (output, label) y from a training dataset consisting of
paired covariate-target data. It is traditionally assumed that the training data and test
data, on which the generalization performance of a learning algorithm is measured, follow
the same probability distribution (Hastie et al., 2009). However, this standard assump-
tion is often violated, i.e., the training data distribution ptr(x, y) is different from the test
data distribution pte(x, y) in many real-world applications such as natural language pro-
cessing, speech recognition, robot control, computer vision or survey data analysis, due to
inevitable sample selection bias or intrinsic non-stationarity of the environment (Heckman,
1979; Quinonero-Candela et al., 2009; Sugiyama and Kawanabe, 2012). For instance, in
natural language processing, part-of-speech taggers, parsers, and text classifiers are trained
on a number of annotated training sets, but might be applied to texts from different gen-
res or styles; in social surveillance, the survey sample might not be representative of the
whole population of survey targets due to the biased nature of the sampling procedure.
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Such a situation is called dataset shift and has attracted a great deal of attention re-
cently (Quinonero-Candela et al., 2009).

If the datasets differ arbitrarily between training and test datasets, learning would not be
possible. Therefore, in order to enable learning, it is necessary to make a reasonable assump-
tion on the relation between the test and training distributions. In this paper, we address
the situation called target shift (Zhang et al., 2013), in which the target-marginal distri-
butions p(y) differ between training and test data, while the target-conditional covariate
distribution p(x|y) remains unchanged, i.e., ptr(y) 6= pte(y) but ptr(x|y) = pte(x|y). Note
that under this target shift situation, the covariate-marginal distribution p(x) and covariate-
conditional distribution p(y|x) are generally different between training and testing phases
due to the shift in p(y). Several methods have been proposed to handle target shift for
categorical target y, which is also known as class-prior change (du Plessis and Sugiyama,
2012; Zhang et al., 2013; Iyer et al., 2014). However, few methods can be applied to con-
tinuous target y. Therefore, the main focus of this paper will be on the continuous tar-
get shift situation, which is often encountered in practice; for instance, prior probability
shift (Storkey, 2009), anti-causal regression (Schölkopf et al., 2012), endogenous stratified
sampling in econometrics (Manski and Lerman, 1977), or sample selection bias in social
surveys (Heckman, 1979).

Motivated by the idea of importance sampling for covariate shift adapta-
tion (Shimodaira, 2000; Sugiyama and Kawanabe, 2012), a similar instance reweighting
technique can be employed to handle the continuous target shift situation. Thus, the key
technical challenge is how to estimate the importance weight pte(y)/ptr(y) for continuous
target y. In this paper, we propose a novel estimator of the importance weight pte(y)/ptr(y)
under a semi-supervised setting, where labeled training data and unlabeled test data are
given. Moreover, we demonstrate its usefulness in two supervised learning tasks: regression
and conditional density estimation under continuous target shift.

In Section 2, we formulate the problem of supervised learning under target shift and show
that regression and conditional density estimation can be solved via importance weighting.
In Section 3, we propose a novel importance weight estimator and discuss its relations with
related work in Section 4. We evaluate the performance of the proposed method through
experiments in Section 5 and give a conclusion in Section 6.

2. Supervised Learning under Target Shift

In this section, we consider a supervised learning setting under target shift, and provide
importance weighted adaptation methods for supervised learning tasks under continuous
target shift.

2.1. Problem Formulation

Supervised learning problems are mainly concerned with estimating an unknown relation
between the covariate (input) and target (output) from a set of labeled training samples.
The covariate-target relation is denoted as f(x) : X → Y, where X and Y are the domains
of the covariate and target. This covariate-target relation should be estimated based on
labeled training samples Dtr = {(xi, yi) ∈ X ×Y}ni=1. The goal of supervised learning is to
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find f which generalizes well on unseen test data Dte = {(x′
j, y

′
j) ∈ X ×Y}n′

j=1; for instance,

accurately estimating the unknown target values {y′j}n
′

j=1 from {x′
j}n

′

j=1 in regression.
We assume that training data and test data are drawn independently and identically

(i.i.d.) from underlying joint distributions with probability densities ptr(x, y) and pte(x, y),
respectively. It is commonly assumed in standard supervised learning that ptr(x, y) =
pte(x, y) (Hastie et al., 2009). In the paper, however, we consider the supervised learning
problems in a more practical setting where the training data and test data have different
distributions, i.e., pte(x, y) 6= ptr(x, y). In this scenario, we need to make appropriate
assumptions on the relatedness between training and test distributions, otherwise nothing
about the test domain can be predicted from training data. In this paper, we assume the
target shift (TarS) assumption (Zhang et al., 2013):

(A1) : pte(x|y) = ptr(x|y) but pte(y) 6= ptr(y). (1)

As a result of the Bayes rule, we can confirm that a shift in the target-marginal distribution
p(y) causes changes in data joint distributions as well as the covariate-target relation in
general.

2.2. Ordinary Empirical Risk Minimization

Let us consider a parametric model g(x;θ) for the relation function f , where θ ∈ Θ ⊆ R
b

for some b > 0. Note that the following discussion can be applied to non-parametric models
as well. Let L : Y × Y → R+ = [0,+∞) be a loss function, where L(g(x;θ), y) measures
the discrepancy between true target value y at input point x and its estimate g(x;θ). The
risk of an estimator g(x;θ) over test data (a.k.a. the generalization error) is given as

R(θ) =

∫∫
L(g(x;θ), y)pte(x, y)dxdy.

Although pte(x, y) is often unknown in practice, the generalization error can be approxi-
mated by the empirical error calculated from training data:

R̂(θ) =
1

n

n∑

i=1

L(g(xi;θ), yi).

When there is no shift in the data distribution, i.e., pte(x, y) = ptr(x, y), a standard method
called empirical risk minimization (ERM) (Vapnik, 1998), in which the empirical error is
minimized, can be employed to yield a consistent estimator of the relation f .

2.3. importance weighted Empirical Risk Minimization

However, due to a difference in distributions, standard ERM is not consistent in the tar-
get shift situation. In the following, we show that a common importance weighting tech-
nique (Sugiyama and Kawanabe, 2012) can be employed to compensate for the shift in
distributions. More specifically, the generalization error can be expressed as follows:

R(θ) =

∫∫
L(g(x;θ), y)pte(x, y)dxdy =

∫∫ (
pte(y)

ptr(y)

)
L(g(x;θ), y)ptr(x, y)dxdy.

3



Nguyen du Plessis Sugiyama

Here the last equality comes from:

pte(x, y) = ptr(x|y)pte(y) =
(
pte(y)

ptr(y)

)
ptr(x, y), (2)

which is due to the target shift assumption (1). This gives rise the following assumption:

(A2) : w(y) =
pte(y)

ptr(y)
<∞ for all y. (3)

Using the importance weight w(y) = pte(y)/ptr(y), we can approximate the generaliza-
tion error with the following importance weighted empirical error:

R̂w(θ) =
1

n

n∑

i=1

w(yi)L(g(xi;θ), yi).

Note that

E
(xi,yi)∼ptr(x,y)

[w(yi)L(g(xi;θ), yi)] =

∫∫
L(g(x;θ), y)w(y)ptr(x, y)dxdy

=

∫∫
L(g(x;θ), y)pte(x, y)dxdy = R(θ),

where the last equality comes from (2). Therefore, the importance weighted empirical error
may be used to estimate the generalization error.

Since many methods for conditional density estimation and regression can be expressed
in terms of loss functions, importance weighting can be readily applied to adapt these
methods to target shift. Below we discuss importance weighted least-squares conditional
density estimation (IWLSCDE) and importance weighted least-squares regression (IWLS).

2.4. Importance Weighted Conditional Density Estimation

We consider the problem of estimating the conditional density p(y|x) under the target
shift situation, where x ∈ R

d denotes d-dimensional input (covariate) and y ∈ R denotes
output (target). Note that we consider one dimensional output here for simplicity, but the
technique discussed below can be applied to multi-dimensional output as well.

Suppose that we are given labeled training samples {(xi, yi)}ni=1 drawn indepen-
dently from a joint probability distribution with density ptr(x, y), and unlabeled test
data {x′

j}n
′

j=1 drawn independently from another probability distribution with density
pte(x) =

∫
pte(x, y)dy. We consider the target shift scenario, i.e.,

pte(y) 6= ptr(y), but pte(x|y) = ptr(x|y).

Note that the input-conditional densities are generally different in this situation, i.e.,
pte(y|x) 6= ptr(y|x). Thus, naive conditional density estimation from training data will
not generalize well to test data since they follow a different distribution. Our goal is to
estimate a conditional density pte(y|x) for test data following pte(x, y).
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Here, we consider a variation of least-squares conditional density estima-
tion (Sugiyama et al., 2010) called importance weighted least-squares conditional density
estimation (IWLSCDE), which employs the importance for instance reweighting.

The conditional density pte(y|x) is modeled by a non-parametric Gaussian kernel model:

r(x, y) =
n∑

l=1

θl exp

(
−‖x− xl‖2

2σ2

)
exp

(
−(y − yl)

2

2σ2

)
.

If n is too large, only a subset of training samples may be used as Gaussian centers. The
parameter θ = (θ1, . . . , θn)

⊤ is determined by minimizing the following squared error:

1

2

∫∫
(r(x, y)− pte(y|x))2 pte(x)dxdy

=
1

2

∫ (∫
r(x, y)2dy

)
pte(x)dx−

∫∫
r(x, y)w(y)ptr(x, y)dxdy +C ′

=
1

2

∫∫ (∫
r(x, y)2dy

)
w(y)ptr(x, y)dxdy −

∫∫
r(x, y)w(y)ptr(x, y)dxdy + C ′, (4)

where C ′ is a constant and thus can be ignored and w(y) = pte(y)/ptr(y). Note that the
above derivation follows from (2).

Replacing the expectations by the sample averages and including an ℓ2-regularizer, we
arrive at the following optimization problem:

θ̂ = argmin
θ

[
1

2
θ⊤Ĥθ − ĥ

⊤
θ +

λ

2
θ⊤θ

]
= (Ĥ + λI)−1ĥ,

where λ ≥ 0 is the regularization parameter, I denotes the identity matrix, and

Ĥl,l′ =
σ
√
π

n

n∑

i=1

w(yi) exp

(
−‖xi − xl‖2 + ‖xi − xl′‖2

2σ2

)
exp

(
−(yl − yl′)

2

4σ2

)
,

ĥl =
1

n

n∑

i=1

w(yi) exp

(
−‖xi−xl‖2

2σ2

)
exp

(
−(yi−yl)2

2σ2

)
.

A similar derivation of Ĥ and ĥ can be found in Sugiyama et al. (2010), and is therefore
omitted for brevity. Hyper-parameters for the above model can be selected by using impor-
tance weighted cross validation (Sugiyama et al., 2007; Sugiyama and Kawanabe, 2012).

2.5. Importance Weighted Regression

We consider the semi-supervised regression problem under target shift. More specifically,
given training samples {(xi, yi)}ni=1 drawn independently from a joint probability distri-
bution with density ptr(x, y) and unlabeled test data {x′

j}n
′

j=1 drawn independently from
another probability distribution with density pte(x) =

∫
pte(x, y)dy, we learn the condi-

tional expectation:

f(x) =

∫
ypte(y|x)dy.
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The conditional expectation f(x) is modeled as

g(x) =
n∑

l=1

ηl exp

(
−‖x− xl‖2

2σ2x

)
.

The parameter η = (η1, . . . , ηn)
⊤ is determined by the importance weighted least-squares

(IWLS) (Sugiyama and Kawanabe, 2012):

1

2

∫
(g(x)− f(x))2 pte(x)dx

=
1

2

∫
g(x)2pte(x)dx−

∫
g(x)

[∫
ypte(y|x)dy

]
pte(x)dx+ C ′′

=
1

2

∫∫
g(x)2w(y)ptr(x, y)dxdy−

∫∫
yg(x)w(y)ptr(x, y)dxdy +C ′′,

where C ′′ is a constant and thus can be ignored. Note that the last equality follows from (2).
Replacing the expectations by the sample averages and including an ℓ2-regularizer, we arrive
at the following optimization problem:

η̂ = argmin
η

[
1

2
η⊤Ĝη − ĝ⊤η +

γ

2
η⊤η

]
= (Ĝ + γI)−1ĝ,

where γ ≥ 0 is the regularization parameter and

Ĝl,l′ =
1

n

n∑

i=1

w(yi) exp

(
−‖xi−xl‖2 + ‖xi−xl′‖2

2σ2x

)
, ĝl =

1

n

n∑

i=1

yiw(yi) exp

(
−‖xi−xl‖2

2σ2x

)
.

The Gaussian kernel width σx and the regularization parameter γ can be chosen by impor-
tance weighted cross validation (Sugiyama et al., 2007).

3. Importance Weight Estimation by Distribution Matching

As shown in the previous section, the target shift adaptation techniques require the values
of the importance weight at the training points {w(yi)}ni=1, which are usually unknown in
practice. Moreover, few methods have been proposed to estimate the importance weight
under continuous target shift situations. In this section, we propose a novel method to
estimate the importance weight for continuous target y.

3.1. Problem Formulation

In practice, the weighting function w(y) is unknown. Given labeled training data
{(xi, yi)}ni=1 and unlabeled test data {x′

j}n
′

j=1 drawn independently from the probability
distributions with densities ptr(x, y) and pte(x) =

∫
pte(x, y)dy respectively, our aim is to

estimate the importance weight function, w(y) = pte(y)/ptr(y). Note that labeled data from
the test distribution {y′j}n

′

j=1 are not available under the setting, which makes the estimation
problem non-trivial.
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Denote a model for the unknown importance weight w(y) as s(y). We can then model
the test input density as

qs(x) =

∫
s(y)ptr(x, y)dy,

where notation qs(x) emphasizes that it depends on s(y).
The importance weight w(y) can be estimated by matching qs(x) to the test distribution

pte(x) under a discrepancy measure D. This is justified by the target shift assumption (A1)
and the definition of the importance weight w(y):

pte(x) =

∫
pte(x, y)dy =

∫
pte(x|y)pte(y)dy

=

∫
ptr(x|y)ptr(y)w(y)dy =

∫
w(y)ptr(x, y)dy.

The optimization problem of minimizing the discrepancy D between qs(x) and pte(x) is:

ŵ = argmin
s

D (qs(x), pte(x))

subject to s(y) ≥ 0 for all y ∈ Y and
∫
ptr(y)s(y)dy = 1,

(5)

where the constraints are for non-negativity and normalization.
Ratio-based divergences, e.g., the Kullback-Leibler (KL) divergence, and difference-

based distances, e.g., the L2-distance are common discrepancy measures in machine learn-
ing and statistics. Among them, L2-distance is a proper distance measure, always bounded
as long as each density is bounded and thus stable (Sugiyama et al., 2013a). More impor-
tantly, it can be accurately and analytically approximated in a computationally efficient and
numerically stable manner via direct density-difference estimation (Sugiyama et al., 2013b).
Therefore, L2-distance would be a suitable discrepancy measure for the current problem of
estimating the importance weight. For the L2-distance, the optimization problem becomes

ŵ = argmin
s

L2 (qs(x), pte(x))

subject to s(y) ≥ 0 for all y and
∫
ptr(y)s(y)dy = 1,

(6)

where

L2(qs(x), pte(x)) =
1

2

∫
(qs(x)− pte(x))

2 dx.

This optimization problem is convex in s and attains a minimum at qs(x) = pte(x).
To take advantage of the fact that the above objective function is convex in s(y), we

use a linear-in-parameter model:

s(y) =

b∑

l=1

αlφl(y) = α⊤φ(y), (7)

where b is the number of parameters, α = (α1, . . . , αb)
⊤ are parameters to be learned from

data, ⊤ denotes the transpose, and φ(y) = (φ1(y), . . . , φb(y))
⊤ are basis functions.

Note that b and {φl(y)}bl=1 can depend on the samples {yl}nl=1 and thus non-parametric
kernel models can also be represented by (7). In practice, we use the non-parameteric

Gaussian kernel model, φl(y) = exp
(
− (y − yl)

2 /(2κ2y)
)
, for b = n.
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3.2. L2-distance Estimation

Since the L2-distance above contains unknown densities ptr(x, y) and pte(x), it cannot
be directly computed. Here, following Sugiyama et al. (2013b), let us model the density
difference qs(x)− pte(x) by a non-parametric Gaussian kernel model:

t(x) =
n+n′∑

l=1

βl exp

(
−‖x− xl‖2

2κ2x

)
. (8)

The parameter β = (β1, . . . , βn+n′)⊤ is determined by minimizing the squared error:

1

2

∫
(t(x)− (qs(x)− pte(x)))

2 dx =
1

2

∫
t(x)2dx−

∫
t(x)qs(x)dx+

∫
t(x)pte(x)dx+C,

where C is a constant and thus can be ignored. Replacing the expectations by the sample
averages and including an ℓ2-regularizer, we arrive at the following optimization problem:

β̂ = argmin
β

[
1

2
β⊤Uβ − β⊤(V̂ α− û) +

δ

2
β⊤β

]
= (U + δI)−1(V̂ α− û),

where δ ≥ 0 is the regularization parameter and

Ul,l′ = (πκ2x)
d/2exp

(
−‖xl − xl′‖2

4κ2x

)
, ûl =

1

n′

n′∑

j=1

exp


−

∥∥∥x′
j − xl

∥∥∥
2

2κ2x


 ,

V̂l,l′ =
1

n

n∑

i=1

exp

(
−‖xi − xl‖2

2κ2x

)
exp

(
−(yi − yl′)

2

2κ2y

)
.

With the solution β̂, an L2-distance estimator can be obtained as

L̂2 (q(x), pte(x)) = J(α) +
1

2
û⊤(U + δI)−1û,

where

J(α) =
1

2
α⊤V̂

⊤
(U + δI)−1V̂ α− û⊤(U + δI)−1V̂ α.

The Gaussian kernel width κx and the regularization parameter δ can be chosen by cross
validation (CV) with respect to the squared error.

3.3. L2-distance based Importance Weight Estimation

Finally, the parameter α in the importance weight model (7) is learned by minimizing the
above L2-distance estimator with an ℓ2-regularizer:

α̂ = argmin
α

[
J(α) +

ρ

2
α⊤α

]

subject to α ≥ 0 and α⊤

(
1

n

n∑

i=1

φ(yi)

)
= 1,

8



Continuous Target Shift Adaptation in Supervised Learning

where

φ(y) =
(
exp

(
−(y − y1)

2/(2κ2y)
)
, . . . , exp

(
−(y − yn)

2/(2κ2y)
))⊤

.

When all the hyper-parameters κx, δ, κy and ρ included in the objective function above
are fixed in advance, the optimization problem becomes a linearly constrained quadratic
program and thus can be solved effectively by any off-the-shelf solver. However, it is our
aim to objectively optimize all the hyper-parameters based on data. For this purpose, we
employ a nested CV procedure as described below.

In the outer CV loop, we iterate over a list of candidate hyper-parameter pairs {(κy, ρ)}.
For each pair (κy, ρ), we perform the following iterative algorithm, where α(k) denotes the
solution at the kth step.

1. Start with an initial solution α(0).

2. Given (κy, ρ), the current solution α(k) and a list of candidate pairs {(κx, δ)}, conduct
the inner CV loop to select κx and δ in the L2-distance estimator.

3. Given the current solution α(k) and selected hyper-parameters, solve the following
quadratically constrained quadratic program (QCQP):

α(k+1) = argmin
α

[
J(α) +

ρ

2
α⊤α

]

subject to α ≥ 0, α⊤

(
1

n

n∑

i=1

φ(yi)

)
= 1 and ‖α−α(k)‖2 ≤ ǫ,

where ǫ is a small positive step size.

4. Continue Step 2 - Step 3 until convergence.

Instead of iterating until convergence, we may preset the maximum number of iterations to
control the running time of the algorithm.

The Gaussian kernel width κy and the regularization parameter ρ are chosen by the
outer CV loop with respect to the estimated L2-distance. We employ the off-the-shelf
Gurobi solver1 to solve the QCQP problem in the latter experiments. We call the proposed
method L2-distance based importance weight estimation (L2IWE).

4. Discussion

In this section, we discuss the relations between the proposed method and related work.

4.1. A Kernel Mean Matching Approach

We first give a brief review of a recently proposed method (Zhang et al., 2013), called TarS
for estimating the importance weight under the target shift situation.

In machine learning problems, it is desirable to avoid density estimation when comparing
distributions. The idea of distribution matching under maximum mean discrepancy (MMD)
in a reproducing kernel Hilbert space (RKHS) is to avoid density estimation by matching

1. The solver is available from http://www.gurobi.com.
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two distributions based on their kernel mean embedding (Gretton et al., 2006). The kernel
mean embedding of the covariate density p(x) is a point in the RKHS H defined as

µX = Ex∼p(x)[ψ(x)],

where ψ(x), is a feature map with the corresponding kernel k(x,x′) = 〈ψ(x), ψ(x′)〉H, and
< ·, · >H denotes the inner product in H. In order to estimate the importance weight, we
match the test covariate density pte(x) with the density

q(x) =

∫
ptr(x|y)ptr(y)w(y)dy.

The TarS method employs a Gaussian kernel, i.e., k(xi,xj) = exp
(
−‖xi − xj‖2/(2σ2)

)
,

where σ is the kernel width. This results in an empirical version that is a quadratic program
(Zhang et al., 2013, Eq. (5)).

The performance of MMD-based TarS depends on the choice of three tuning hyper-
parameters (one of which is the kernel width σ). Since estimates of the importance
weight are available only at {yi}ni=1, there is no reliable way to automatically opti-
mize these hyperparameters, for instance, by cross validation (CV) (Tsuboi et al., 2009;
Sugiyama and Kawanabe, 2012). In a similar way to Kanamori et al. (2013), TarS can be
extended to its inductive variant for out-of-sample prediction, i.e., the entire importance
weight function is estimated. Such a procedure allows two of the hyper-parameters to be
estimated via CV.

However, the Gaussian kernel width σ may not be appropriately determined by CV
since changing the value of σ implies changing the RKHS as well as the error metric defined
using the corresponding RKHS norm. Since the objective values for different norms are
not comparable, CV cannot be performed to appropriately optimize σ. Although a popular
heuristic to choose σ is to use the median distance between samples as the Gaussian width
σ (Song et al., 2007), there seems to be no strong justification for this heuristic.

4.2. Categorical Target Shift Adaptation

Various methods have been proposed to handle the target shift situation for categorical
targets, also known as class prior change (du Plessis and Sugiyama, 2012; Zhang et al.,
2013; Iyer et al., 2014). We discuss relations between our proposed method and some state-
of-the-art methods for categorical target shift.

As discussed above, the difficulties in hyper-parameter tuning make these MMD-
based methods (Zhang et al., 2013; Iyer et al., 2014) less useful in practice. Mean-
while, du Plessis and Sugiyama (2014) estimated the test target distribution pte(y) by
matching distributions under some divergence measures, e.g., Pearson divergence. For cat-
egorical target y ∈ {1, 2, . . . , c}, the training target distribution ptr(y = t) can be naively
estimated from training data {yi}ni=1 as p̂tr(y = t) = nt/n, where nt is the number of train-
ing instances whose target values are equal to t. Therefore, it suffices to estimate only the
test target distribution pte(y) instead of the importance weight function w(y) as a whole.
In du Plessis and Sugiyama (2014), the test target distribution is modeled with a param-
eter vector θ ∈ R

c, where θt = pte(y = t), and the parameter θ is learned by distribution

10
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matching as

θ̂ = argmin
θ⊤

1=1,θ≥0

D

(
pte(x),

c∑

t=1

θt ptr(x|y = t)

)
. (9)

Our proposed method thus can be regarded as a natural extension
of du Plessis and Sugiyama (2014) for the case of continuous targets. In the case of
a categorical y, we can obtain samples from ptr(x|y) by selecting the y-labeled samples in
the labeled training dataset. However, when y is continuous, it is not possible to sample
directly from p(x|y). This makes the extension from the categorical to continuous cases
non-trivial.

5. Experiments

In this section, we experimentally evaluate the performance of the proposed L2IWE method,
particularly in comparison with TarS (Zhang et al., 2013)2.

5.1. Illustrative Examples

Let us consider the following one-dimensional toy problem in the target shift setting:

ptr(y) = 0.4 N (y; 1, 1.52) + 0.6 N (y; 2.5, 0.52), pte(y) = N (y; 2.5, 0.52),

where N (y;µ, σ2) denotes the Gaussian density with mean µ and variance σ2 with respect
to y. We first draw n = 300 samples {yi}ni=1 from ptr(y) and n′ = 300 samples {y′j}n

′

j=1

from pte(y). Then training inputs {xi}ni=1 are generated as xi = yi + 3 + ǫi, where the
noise {ǫi}ni=1 is independently drawn following N (ǫ; 0, 1.52). Test inputs {x′

j}n
′

j=1 are also

generated from {y′j}n
′

j=1 in the same way.

Given labeled training data {(xi, yi)}ni=1 and unlabeled test data {x′
j}n

′

j=1, the task is
to estimate the importance weight values at training target points {w(yi)}ni=1. We run the
experiments 100 times for the proposed L2IWE method and the TarS method, and evaluate
the quality of the importance weight estimates {ŵ(yi)}ni=1 by the normalized mean squared
error (NMSE):

NMSE =
1

n

n∑

i=1

(
ŵ(yi)∑n

i′=1 ŵ(yi′)
− w(yi)∑n

i′=1w(yi′)

)2

.

The average (and standard error) of NMSE over 100 runs for L2IWE and TarS are
3.02(±0.3) × 106 and 4.71(±0.58) × 106. According to a t-test with significance level 5%,
L2IWE gives a significantly more accurate estimate of the importance weight than TarS.

The average computation time of L2IWE and TarS (over 100 runs) is 8929.7s and 60.56s
respectively3. L2IWE is slower than TarS in two orders of magnitude, which is due to the
cross validation of (κx, δ) in L

2-distance estimation. We note that, without cross validation,
the computation time of L2IWE is in the same order as that of TarS. Figure 1(a) shows an
exemplary example of importance weight estimation by L2IWE and TarS.

2. The program code is available at http://people.tuebingen.mpg.de/kzhang/Code-TarS.zip .
The hyper-parameters are chosen according to the supplementary material available at
http://jmlr.org/proceedings/papers/v28/zhang13d-supp.pdf.

3. Simulations were performed on a PC with an Intel Xeon E5-2450 2.1GHz processor.
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Figure 1: Illustrative examples
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Table 1: Average and standard error of MSE in conditional density estimation (CDE) and
regression (REG) over 100 trials for toy data. Bold face indicates significant dif-
ference by t-test with significance level 5%. Note that MSE for CDE ignores a
positive constant so the MSE value can be negative.

L2IWE TarS Unweighted

CDE −0.28± 0.02 −0.25± 0.04 −0.25± 0.01
REG 0.28± 0.09 0.31± 0.07 0.50± 0.07

We further apply the estimated importance weight values {ŵi}ni=1 to target shift adap-
tation in conditional density estimation and regression. Examples of target shift adaptation
are illustrated in Figure 1(b) and Figure 1(c), and the average and the standard error of
MSE in conditional density estimation and regression over 100 trials are summarized in
Table 14, where a prefix “UW-” or “Unweighted” means that no importance weight is used.
The results show that the proposed method is promising.

5.2. Target Shift Adaptation for Benchmark Datasets

Next, we evaluate the performance of importance weight estimators on benchmark datasets
which are collected from mldata.org5 and DELVE6.

Each dataset consists of input/output pairs {(xi, yi)}Ni=1. We set the number of training
samples and test samples to n = 300 and n′ = 300, respectively. We normalize all the output
samples into [0,1] and select the test samples {(x′

j , y
′
j)}n

′

j=1 from the data pool through the
following biased sampling scheme. We first randomly shuffle the data pool at the beginning
of each trial of the experiments. A sample (xk, yk) is then randomly chosen from the pool
and accepted if yk ∈ [a, b] for 0 < a < b < 1. We remove the sample from the pool and repeat
this procedure until we accept n′ samples. We choose the training samples {(xi, yi)}ni=1

uniformly from the rest. Note that we only use labeled training samples {(xi, yi)}ni=1 and
unlabeled test samples {x′

j}n
′

j=1 for training conditional density estimators and regressors.

The test output values {y′j}n
′

j=1 are used only for evaluating the test performance.
The average and the standard error of MSE in conditional density estimation and re-

gression over 100 trials for the benchmark datasets are summarized in Table 2 and Table 3,
respectively. They show that the proposed method is still promising for the benchmark
datasets.

For the conditional density estimation task, Table 2 shows that the proposed method
L2IWE outperforms TarS and Unweighted on 7 out of 10 datasets. Meanwhile, Table 3
shows that L2IWE performs better than TarS and Unweighted on 8 out of 10 datasets.

4. In the case of regression, we computed MSE in a standard way for test data. However, in the case
of conditional density estimation, we ignored a positive constant term which cannot be computed only
from test data; see Eq. (4)) for details. For this reason, MSE for conditional density estimation often
takes a negative value.

5. http://mldata.org/
6. http://www.cs.utoronto.ca/~delve/
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Table 2: Average and standard error of MSE (without the positive constant) in conditional
density estimation over 100 trials for benchmark datasets. Bold face indicates
significant difference by t-test with significance level 5%.

Data
MSE/test error ± std.error

L2IWE TarS Unweighted

puma8nh −0.85± 0.01 −0.77± 0.01 −0.84± 0.01
kin8nm −1.09± 0.01 −1.00± 0.01 −0.94± 0.01
kin8nh −1.07± 0.01 −0.96± 0.02 −0.96± 0.02
kin8fm −1.61± 0.01 −1.62± 0.02 −1.50± 0.01
kin8fh −1.42± 0.02 −1.44± 0.02 −1.24± 0.02

CA Housing −1.16± 0.02 −0.75± 0.08 −0.94± 0.01
elevators −3.08± 0.04 −1.05± 0.12 −3.11± 0.03

delta ailerons −5.13± 0.05 −4.77± 0.06 −4.91± 0.05
abalone −2.10± 0.02 −1.99± 0.02 −2.08± 0.02
housing −1.30± 0.02 −1.66± 0.02 −1.07± 0.02

Table 3: Average and standard error of MSE in regression over 100 trials for benchmark
datasets. All values are multiplied with 102. Bold face indicates significant differ-
ence by t-test with significance level 5%.

Data
MSE/test error ± std.error

L2IWE TarS Unweighted

puma8nh 2.81± 0.03 2.98± 0.04 3.05± 0.03
kin8nm 0.98± 0.01 1.19± 0.02 1.27± 0.02
kin8nh 1.06± 0.01 1.28± 0.03 1.31± 0.02
kin8fm 0.07± 0.00 0.07± 0.00 0.07± 0.00
kin8fh 0.45± 0.00 0.50± 0.01 0.50± 0.00

CA Housing 2.77± 1.00 6.87± 4.30 9.76± 3.72
elevators 0.15± 0.00 3.54± 0.34 0.28± 0.01

delta ailerons 0.08± 0.00 0.14± 0.01 0.12± 0.00
abalone 0.37± 0.00 0.54± 0.02 0.43± 0.01
housing 0.52± 0.01 0.68± 0.03 1.21± 0.02

Overall, we conclude that the proposed L2IWE is a useful and promising method for target
shift adaptation.

6. Conclusion

We considered the supervised learning problems under target shift (Zhang et al., 2013),
where the target-marginal distributions p(y) differ between training and testing phases,
yet the target-conditional distribution p(x|y) remains the same. This dataset shift sce-
nario is often encountered in practice; for instance, prior probability shift (Storkey, 2009),
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anti-causal regression (Schölkopf et al., 2012), endogenous stratified sampling in econo-
metrics (Manski and Lerman, 1977), or sample selection bias in econometrics and sociol-
ogy (Heckman, 1979). Although various methods have been proposed for supervised learn-
ing under the categorical target shift (a.k.a. class prior change) (du Plessis and Sugiyama,
2014; Iyer et al., 2014; Zhang et al., 2013), few of them can be applied to the continuous
target shift. Therefore, the main goal of this paper was to handle the continuous target
shift in supervised learning. The key part of the proposed approach is a novel importance
weight estimation procedure, called L2IWE. Utilizing labeled training data and unlabeled
test data, L2IWE estimates the importance weight function by direct distribution matching
under L2-distance. Compared with the state-of-the-art method (Zhang et al., 2013), L2IWE
is equipped with an automatic model selection procedure, and thus is practically more use-
ful. The experiments showed that our proposed method achieves better performance for
the target shift adaptation in conditional density estimation and regression tasks.
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