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Abstract

We consider the problem of estimating the class prior in an unlabeled dataset. Under the
assumption that an additional labeled dataset is available, the class prior can be estimated
by fitting a mixture of class-wise data distributions to the unlabeled data distribution.
However, in practice, such an additional labeled dataset is often not available. In this
paper, we show that, with additional samples coming only from the positive class, the
class prior of the unlabeled dataset can be estimated correctly. Our key idea is to use
properly penalized divergences for model fitting to cancel the error caused by the absence
of negative samples. We further show that the use of the penalized L1-distance gives a
computationally efficient algorithm with an analytic solution, and establish its uniform
deviation bound and estimation error bound. Finally, we experimentally demonstrate the
usefulness of the proposed method.
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1. Introduction

Suppose that we have two datasets X and X ′, which are i.i.d. samples from probability
distributions with density p(x|y = 1) and p(x), respectively:

X = {xi}ni=1
i.i.d.∼ p(x|y = 1), X ′ = {x′j}n

′
j=1

i.i.d.∼ p(x).

That is, X is a set of samples from the positive class and X ′ is a set of unlabeled samples
(consisting of both the positive and negative samples). Our goal is to estimate the class
prior

π = p(y = 1),

in the unlabeled dataset X ′. Estimation of the class prior from positive and unlabeled data
is of great practical importance, since it allows a classifier to be trained only from these
datasets (Scott and Blanchard, 2009; du Plessis et al., 2014), in the absence of negative
data.

If a mixture of class-wise input data densities,

q′(x; θ) = θp(x|y = 1) + (1− θ)p(x|y = −1),

is fitted to the unlabeled input data density p(x), the true class prior π can be obtained
(Saerens et al., 2002; du Plessis and Sugiyama, 2012), as illustrated in Figure 1(a). In
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p(x)

θp(x|y=1)

(1−θ)p(x|y=−1)

x

(a) Full matching with q(x; θ) =
θp(x|y = 1) + (1− θ)p(x|y = −1)

p(x)

θp(x|y=1)

x

(b) Partial matching with q(x; θ) =
θp(x|y = 1)

Figure 1: Class-prior estimation by matching model q(x; θ) to unlabeled input data density
p(x).

practice, fitting may be performed under the f -divergence (Ali and Silvey, 1966; Csiszár,
1967):

θ := arg min
0≤θ≤1

∫
f

(
q′(x; θ)

p(x)

)
p(x)dx, (1)

where f(t) is a convex function with f(1) = 0. So far, class-prior estimation methods
based on the Kullback-Leibler divergence (Saerens et al., 2002), and the Pearson divergence
(du Plessis and Sugiyama, 2012) have been developed (Table 1). Additionally, class-prior
estimation has been performed by L2-distance minimization (Sugiyama et al., 2012).

However, since these methods require labeled samples from both positive and negative
classes, they cannot be directly employed in the current setup. To cope with problem, a
partial model,

q(x; θ) = θp(x|y = 1),

was used in Elkan and Noto (2008) and du Plessis and Sugiyama (2014) to estimate the
class prior in the absence of negative samples (Figure 1(b)):

θ := arg min
0≤θ≤1

Divf (θ), (2)

where

Divf (θ) :=

∫
f

(
q(x; θ)

p(x)

)
p(x)dx.

In this paper, we first show that the above partial matching approach consistently
overestimates the true class prior. We then show that, by appropriately penalizing f -
divergences, the class prior can be correctly obtained. We further show that the use of the
penalized L1-distance drastically simplifies the estimation procedure, resulting in an analytic
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Table 1: Common f -divergences. f∗(z) is the conjugate of f(t) and f̃∗(z) is the conjugate
of the penalized function f̃(t) = f(t) for 0 ≤ t ≤ 1 and ∞ otherwise.

Divergence
Function
f(t)

Conjugate
f∗(z)

Penalized Conjugate

f̃∗(z)

Kullback-Leibler
divergence (Kullback and Leibler, 1951)

− log(t) − log(−z)− 1

{
−1− log(−z) z ≤ −1

z z > −1

Pearson
divergence (Pearson, 1900)

1
2 (t− 1)2 1

2z
2 + z


− 1

2 z < −1
1
2z

2 + z −1 ≤ z ≤ 0

z z > 0

L1-distance |t− 1|

{
z −1 ≤ z ≤ 1

∞ otherwise
max (z,−1)

estimator that can be computed efficiently. We also establish a uniform deviation bound
and an estimation error bound for the penalized L1-distance estimator. Finally, through
experiments, we demonstrate the usefulness of the proposed method in classification from
positive and unlabeled data.

2. Class-prior estimation via penalized f-divergences

First, we investigate the behavior of the partial matching method (2), which can be regarded
as an extension of the existing analysis for the Pearson divergence (du Plessis and Sugiyama,
2014) to more general divergences.

We show that naively using general divergences may result in an overestimate of the
class prior, and show how this situation can be avoided by penalization.

2.1. Over-estimation of the class prior

For f -divergences, we focus on f(t) such that its minimum is attained at t ≥ 1. We also
assume that it is differentiable and the derivative of f(t) is ∂f(t) < 0, when t < 1, and
∂f(t) ≤ 0 when t = 1. This condition is satisfied for divergences such as the Kullback-Leibler
divergence and the Pearson divergence. Because of the divergence matching formulation,
we expect that the objective function (2) is minimized at θ = π. That is, based on the
first-order optimality condition, we expect that the derivative of Divf (θ) w.r.t. θ, given by

∂Divf (θ) =

∫
∂f

(
θp(x|y = 1)

p(x)

)
p(x|y = 1)dx,

satisfies ∂Divf (π) = 0. Since

πp(x|y = 1)

p(x)
= p(y = 1|x)≤1 =⇒ ∂f

(
πp(x|y = 1)

p(x)

)
≤0,
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we have

∂Divf (π)=

∫
∂f
(
p(y = 1|x)

)
︸ ︷︷ ︸

≤0

p(x|y = 1)dx ≤ 0.

The domain of the above integral, where p(x|y = 1) > 0, can be expressed as:

D1 = {x : p(y = 1|x) = 1 ∧ p(x|y = 1) > 0} ,D2 = {x : p(y = 1|x) < 1 ∧ p(x|y = 1) > 0} .

The derivative is then expressed as

∂Divf (π) =

∫
D1

∂f(p(y = 1|x))︸ ︷︷ ︸
≤0

p(x|y = 1)dx+

∫
D2

∂f(p(y = 1|x))︸ ︷︷ ︸
<0

p(x|y = 1)dx. (3)

The posterior is p(y = 1|x) = πp(x|y = 1)/p(x), where p(x) = πp(x|y = 1) + (1 −
π)p(x|y = −1). D1 is the part of the domain where the two classes do not overlap, because
p(y = 1|x) = 1 implies that πp(x|y = 1) = p(x) and (1 − π)p(x|y = −1) = 0. Conversely,
D2 is the part of the domain where the classes overlap because p(y = 1|x) < 1 implies that
πp(x|y = 1) < p(x), and (1− π)p(x|y = −1) > 0.

Since the first term in (3) is non-positive, the derivative can be zero only if D2 is empty
(i.e., there is no class overlap). If D2 is not empty (i.e., there is class overlap) the derivative
will be negative. Since the objective function Divf (θ) is convex, the derivative ∂Divf (θ) is
a monotone non-decreasing function. Therefore, if the function Divf (θ) has a minimizer, it
will be larger than the true class prior π.

2.2. Partial distribution matching via penalized f-divergences

In this section, we consider a function

f(t) =

{
−t t < 1,

c(t− 1) t ≥ 1.

This function coincides with the L1 distance when c = 1. The analysis here is slightly more
involved, since the subderivative should be taken at t = 1. This gives the following:

∂Divf (π) =

∫
D1

∂f(1)p(x|y = 1)dx+

∫
D2

∂f(p(y = 1|x))︸ ︷︷ ︸
<0

p(x|y = 1)dx, (4)

where the subderivative at t = 1 is ∂f(1) = [−1, c] and the derivative for t < 1 is ∂f(t) = −1.
We can therefore write the subderivative of the first term in (4) as∫

D1

∂f(1)p(x|y = 1)dx =

[
−
∫
D1

p(x|y = 1)dx, c

∫
D1

p(x|y = 1)dx

]
.

The derivative for the second term in (4) is∫
D2

∂f(p(y = 1|x)p(x|y = 1)dx = −
∫
D2

p(x|y = 1)dx.
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To achieve a minimum at π, we should have

0 ∈
[
−
∫
D1

p(x|y = 1)dx−
∫
D2

p(x|y = 1)dx, c

∫
D1

p(x|y = 1)dx−
∫
D2

p(x|y = 1)dx

]
.

However, depending on D1 and D2, we may have

c

∫
D1

p(x|y = 1)dx−
∫
D2

p(x|y = 1)dx < 0,

which means that 0 6∈ ∂Divf (π) The solution is to take c = ∞ to ensure that 0 ∈ Divf (π)
is always satisfied.

Using the same reasoning as above, we can also rectify the overestimation problem for
other divergences specified by f(t), by replacing f(t) with a penalized function f̃(t):

f̃(t) =

{
f(t) 0 ≤ t ≤ 1,

∞ otherwise.

In the next section, estimation of penalized f -divergences is discussed.

2.3. Direct evaluation of penalized f-divergences

Here, we show how distribution matching can be performed without density estimation
under penalized f -divergences. We use the Fenchel duality bounding technique for f -
divergences (Keziou, 2003), which is based on Fenchel’s inequality :

f(t) ≥ tz − f∗(z), (5)

where f∗(z) is the Fenchel dual or convex conjugate defined as

f∗(z) = sup
t′
t′z − f(t′).

Applying the bound (5) in a pointwise manner, we obtain

f

(
θp(x | y = 1)

p(x)

)
≥ r(x)

(
θp(x | y = 1)

p(x)

)
− f∗(r(x)),

where r(x) fulfills the role of z in (5). Multiplying both sides with p(x) gives

f

(
θp(x | y = 1)

p(x)

)
p(x) ≥ θr(x)p(x | y = 1)− f∗(r(x))p(x). (6)

Integrating and then selecting the tightest bound gives

Divf (p‖q) ≥ sup
r
θ

∫
r(x)p(x |y = 1)dx−

∫
f∗(r(x))p(x)dx. (7)

Replacing expectations with sample averages gives

D̂ivf (p‖q) ≥ sup
r

θ
1

n

n∑
i=1

r(xi)−
1

n′

n′∑
j=1

f∗(r(x′j)), (8)

where D̂ivf (p‖q) denotes Divf (p‖q) estimated from sample averages. Note that the conju-
gate f∗(z) of any function f(t) is convex. Therefore, if r(x) is linear in parameters, the
above maximization problem is convex and thus can be easily solved.

The conjugates for selected penalized f -divergences are given in Table 1.

5



du Plessis Niu Sugiyama

2.4. Penalized L1-distance estimation

Here we focus on penalized L1-distance f(t) = |t− 1| as a specific example of penalized
f -divergences, and show that an analytic and computationally efficient solution can be
obtained.

The conjugate for the penalized L1-distance is f̃∗(z) = max (z,−1). Then we can see
that the lower-bound in (7) will be met with equality when

r(x) =

{
−1 θp(x|y = 1) ≤ p(x),

∞ otherwise.
(9)

For this reason, we use the following linear model as r(x):

r(x) =

b∑
`=1

α`ϕ`(x)− 1, (10)

where {ϕ`(x)}b`=1 is the set of non-negative basis functions1. Then the empirical estimate
in the right-hand side of (8) can be expressed as

(α̂1, . . . , α̂b) = arg min
(α1,...,αb)

1

n′

n′∑
j=1

max

(
b∑
`=1

α`ϕ`(x
′
j), 0

)
− θ

n

n∑
i=1

b∑
`=1

α`ϕ`(xi) + θ +
λ

2

b∑
`=1

α2
` ,

(11)

where the regularization term λ
2

∑b
`=1 α

2
` for λ > 0 is included to avoid overfitting.

The optimal value for the lower-bound (7) occurs when r(x) ≥ −1 (see (9)). This fact
can be incorporated by constraining the parameters of the model (10), so that α` ≥ 0, ∀` =
1, . . . , b. If the basis functions, ϕ`(x), ` = 1, . . . , b, are non-negative, the term inside the
max in (11) is always positive and the max operation becomes superfluous. This allows
us to obtain the parameter vector (α1, . . . , αb) as the solution to the following constrained
optimization problem:

(α̂1, . . . , α̂b) = arg min
(α1,...,αb)

b∑
`=1

λ

2
α2
` −

b∑
`=1

α`β`,

s.t. α` ≥ 0, ` = 1, . . . , b,

where

β` =
θ

n

n∑
i=1

ϕ`(xi)−
1

n′

n′∑
j=1

ϕ`(x
′
j).

The above optimization problem decouples for all α` values and can be solved separately as

α̂` =
1

λ
max (0, β`) .

1. In practice, we use Gaussian kernels centered at all sample points as the basis functions: ϕ`(x) =
exp

(
−‖x− c`‖2/(2σ2)

)
, where σ > 0, and (c1, . . . , cn, cn+1, . . . , cn+n′) = (x1, . . . ,xn,x

′
1, . . .x

′
n′)
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Since α̂ can be just calculated with a max operation, the above solution is extremely fast
to calculate. All hyper-parameters including the Gaussian width σ and the regularization
parameter λ are selected for each θ via straightforward cross-validation.

Finally, our estimate of the penalized L1-distance (i.e., the maximizer of the empirical
estimate in the right-hand side of (8)) is obtained as

p̂enL1(θ) =
1

λ

b∑
`=1

max (0, β`)β` − θ + 1.

The class prior is then selected so as to minimize the above estimator.

3. Stability analysis

Regarding the estimation stability of p̂enL1(θ) for fixed θ, we have the following deviation
bound. Without loss of generality, we assume that the basis functions are upper bounded
by one, i.e., ∀x, ϕ`(x) ≤ 1 for ` = 1, . . . , b.

Theorem 1 (Deviation bound) Fix θ, then, for any 0 < δ < 1, with probability at least

1− δ over the repeated sampling of D = X ∪ X ′ for estimating p̂enL1(θ;D), we have

∣∣∣p̂enL1(θ;D)− ED[p̂enL1(θ;D)]
∣∣∣ ≤

√√√√ ln(2/δ)

2λ2/b2

(
1

n

(
2 +

1

n

)2

+
1

n′

(
2 +

1

n′

)2
)
.

Proof 1 We prove the theorem based on a technique known as the method of bounded
difference. Let f`(x1, . . . ,xn,x

′
1, . . . ,x

′
n′) = max (0, β`)β`, so that

p̂enL1(θ;D) =
1

λ

b∑
`=1

f`(x1, . . . ,xn,x
′
1, . . . ,x

′
n′)− θ + 1.

Next, we replace xi with x̄i and bound the difference between f`(x1, . . . ,xi, . . . ,xn,x
′
1, . . . ,x

′
n′)

and f`(x1, . . . , x̄i, . . . ,xn,x
′
1, . . . ,x

′
n′). Let t = ϕ`(xi), t

′ = ϕ`(x̄i), and ξ` = β` − t. Since
the basis functions are bounded, we know that 0 ≤ t, t′ ≤ 1, as well as −1 ≤ ξ` ≤ θ. Then
the maximum difference is,

c` = sup
0≤t≤1,0≤t′≤1

max

(
0,
θ

n
t′ − ξ`

)(
θ

n
t′ − ξ`

)
−max

(
0,
θ

n
t− ξ`

)(
θ

n
t− ξ`

)
.

By analyzing the above for different cases where the constraints are active, the the maximum
difference for replacing xi with is x̄i is (θ/n)(2 + θ/n).

We can use the same argument for replacing x′j with x̄′j in f`(x1, . . . ,xn,x
′
1, . . . ,x

′
n′),

resulting in a maximum difference of (1/n)(2 + 1/n). Note that this holds for all f`(·)
simultaneously, and thus the change of p̂enL1(θ;D) is no more than (b/λ)(θ/n)(2 + θ/n) if
xi is replaced with x̄i or (b/λ)(1/n)(2 + 1/n) if x′j is replaced with x̄′j. We can therefore
apply McDiarmid’s inequality to obtain, with probability at least 1− δ/2,

p̂enL1(θ;D)− ED
[
p̂enL1(θ;D)

]
≤

√√√√ ln(2/δ)

2λ2/b2

(
1

n

(
2 +

1

n

)2

+
1

n′

(
2 +

1

n′

)2
)
.
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Applying McDiarmid’s inequality again for ED
[
p̂enL1(θ;D)

]
−p̂enL1(θ;D) proves the result.

�

Theorem 1 shows that the deviation from our estimate to its expectation is small with
high probability. Nevertheless, θ must be fixed before seeing the data, so we cannot use the
estimate to choose θ.

This motivates us to derive a uniform deviation bound. Let us define the constants

Cx= supx∼p(x)

(∑b
`=1 ϕ

2
` (x)

)1/2
≤
√
b,

Cα= sup0≤θ≤1 supX∼pn(x|y=1),X ′∼pn′ (x)

(∑b
`=1 α̂

2
` (θ,D)

)1/2
,

where we write α̂`(θ,D) to emphasize that α̂` depends on θ and D.

Theorem 2 (Uniform deviation bound) For any 0 < δ < 1, with probability at least
1− δ over the repeated sampling of D, the following holds for all 0 ≤ θ ≤ 1,∣∣∣p̂enL1(θ;D)− ED[p̂enL1(θ;D)]

∣∣∣ ≤ ( 2√
n

+
2√
n′

)
CαCx

+

√√√√ ln(2/δ)

2λ2/b2

(
1

n

(
2 +

1

n

)2

+
1

n′

(
2 +

1

n′

)2
)
.

Proof 2 We denote g(θ;D) =
∑b

`=1 α̂`β`, and g(θ) = ED[g(θ;D)] so that

p̂enL1(θ;D) = g(θ;D)− θ + 1, ED[p̂enL1(θ;D)] = g(θ)− θ + 1,

and
p̂enL1(θ;D)− ED[p̂enL1(θ;D)] = g(θ;D)− g(θ).

Step 1: We first consider one direction. By definition, ∀θ,

g(θ;D)− g(θ) ≤ sup
θ
{g(θ;D)− g(θ)} .

We cannot simply apply Theorem 1 to bound the right-hand side since θ in the right-hand
side is not fixed. Nevertheless, according to the proof of Theorem 1, if we replace a single
point xi or x′j in D, the change of supθ{g(θ;D) − g(θ)} is also bounded by b

λn(2 + 1
n) or

b
λn′ (2 + 1

n′ ). We then have, with probability at least 1− δ/2,

sup
θ
{g(θ;D)−g(θ)} ≤ ED

[
sup
θ
{g(θ;D)−g(θ)}

]
+

√√√√ln(2/δ)

2λ2/b2

(
1

n

(
2+

1

n

)2

+
1

n′

(
2 +

1

n′

)2
)
.
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Step 2: Next we bound ED[supθ{g(θ;D) − g(θ)}] based on a technique known as sym-
metrization. Note that the function g(θ;D) =

∑b
`=1 α̂`β` can be rewritten in a point-wise

manner other than a base-wise manner,

g(θ;D) =
n∑
i=1

b∑
`=1

(
α̂`θ

n

)
ϕ`(xi)−

n′∑
j=1

b∑
`=1

(
α̂`
n′

)
ϕ`(x

′
j)

=
n∑
i=1

ω(xi)−
n′∑
j=1

ω′(x′j),

where for simplicity we define

ω(x) =

b∑
`=1

(
α̂`θ

n

)
ϕ`(x), and, ω′(x) =

b∑
`=1

(
α̂`
n′

)
ϕ`(x).

Let D′ = {x̄1, . . . , x̄n, x̄
′
1, . . . , x̄

′
n′} be a ghost sample,

ED
[
sup
θ
{g(θ;D)− g(θ)}

]
= ED

[
sup
θ
{g(θ;D)− ED′ [g(θ;D′)]}

]
,

= ED
[
sup
θ
{ED′ [g(θ;D)− g(θ;D′)]}

]
,

≤ ED,D′
[
sup
θ
{g(θ;D)− g(θ;D′)}

]
,

where we apply Jensen’s inequality with the fact that the supremum is a convex function.
Moreover, let σ = {σ1, . . . , σn, σ′1, . . . , σ′n′} be a set of Rademacher variables of size n+ n′,

ED,D′
[
sup
θ
{g(θ;D)− g(θ;D′)}

]

= ED,D′

sup
θ


 n∑
i=1

ω(xi)−
n′∑
j=1

ω′(x′j)

−
 n∑
i=1

ω(x̄i)−
n′∑
j=1

ω′(x̄′j)




= ED,D′

sup
θ


n∑
i=1

(ω(xi)− ω(x̄i))−
n′∑
j=1

(ω′(x′j)− ω′(x̄′j))




= Eσ,D,D′

sup
θ


n∑
i=1

σi(ω(xi)− ω(x̄i))−
n′∑
j=1

σ′j(ω
′(x′j)− ω′(x̄′j))


 ,

since the original and ghost samples are symmetric and each (ω(xi)−ω(x̄i)) shares the same
distribution with σi(ω(xi)− ω(x̄i)) and each (ω′(x′j)− ω′(x̄′j)) shares the same distribution
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with σ′j(ω
′(x′j)− ω′(x̄′j)). Subsequently,

Eσ,D,D′

sup
θ


 n∑
i=1

σiω(xi)−
n′∑
j=1

σ′jω
′(x′j)

+

 n∑
i=1

(−σi)ω(x̄i)−
n′∑
j=1

(−σ′j)ω′(x̄′j)




≤ Eσ,D

sup
θ


n∑
i=1

σiω(xi)−
n′∑
j=1

σ′jω
′(x′j)


+Eσ,D′

sup
θ


n∑
i=1

(−σi)ω(x̄i)−
n′∑
j=1

(−σ′j)ω′(x̄′j)




= 2Eσ,D

sup
θ


n∑
i=1

σiω(xi)−
n′∑
j=1

σ′jω
′(x′j)


 ,

where we first apply the triangle inequality, and then make use of that the original
and ghost samples have the same distribution and all Rademacher variables have the same
distribution.

Step 3: The Rademacher complexity still remains to be bound. To this end, we decompose
the Rademacher complexity into two,

ED,σ

sup
θ


n∑
i=1

σiω(xi)−
n′∑
j=1

σ′jω
′(x′j)




= ED,σ

sup
θ


n∑
i=1

σi

b∑
`=1

(
α̂`θ

n

)
ϕ`(xi)−

n′∑
j=1

σ′j

b∑
`=1

(
α̂`
n′

)
ϕ`(x

′
j)




≤ 1

n
ED,σ

[
sup
θ

b∑
`=1

(α̂`θ)
n∑
i=1

σiϕ`(xi)

]
+

1

n′
ED,σ

sup
θ

b∑
`=1

α̂`

n′∑
j=1

σ′jϕ`(x
′
j)

 .
Applying the Cauchy-Schwarz inequality followed by Jensen’s inequality to the first Rademacher

average gives

1

n
ED,σ

[
sup
θ

b∑
`=1

(α̂`θ)

n∑
i=1

σiϕ`(xi)

]
≤ Cα

n
ED,σ


 b∑
`=1

(
n∑
i=1

σiϕ`(xi)

)2
1/2


≤ Cα

n

ED,σ

 b∑
`=1

(
n∑
i=1

σiϕ`(xi)

)2
1/2

=
Cα
n

ED,σ

 b∑
`=1

n∑
i,i′=1

σiσi′ϕ`(xi)ϕ`(xi′)

1/2

.

Since σ1, . . . , σn are Rademacher variables,

ED,σ

 b∑
`=1

n∑
i,i′=1

σiσi′ϕ`(xi)ϕ`(xi′)

 = ED

[
n∑
i=1

b∑
`=1

ϕ2
` (xi)

]
≤ nC2

x.

10
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Consequently, we have

1

n
ED,σ

[
sup
θ

b∑
`=1

(α̂`θ)

n∑
i=1

σiϕ`(xi)

]
≤ CαCx√

n
,

1

n′
ED,σ

sup
θ

b∑
`=1

α̂`

n′∑
j=1

σ′jϕ`(x
′
j)

 ≤ CαCx√
n′

,

and

ED,σ

sup
θ


n∑
i=1

σiω(xi)−
n′∑
j=1

σ′jω
′(x′j)


 ≤ ( 1√

n
+

1√
n′

)
CαCx.

3.0.1. Step 4

Combining the three steps together, we obtain that with probability at least 1− δ/2, ∀θ,

g(θ;D)− g(θ) ≤
(

2√
n

+
2√
n′

)
CαCx +

√√√√ ln(2/δ)

2λ2/b2

(
1

n

(
2 +

1

n

)2

+
1

n′

(
2 +

1

n′

)2
)
.

The same argument can be used to bound g(θ)−g(θ;D). Combining these two tail inequalities
proves the theorem. �

Theorem 2 shows that the uniform deviation bound is of orderO(1/
√
n+1/

√
n′), whereas

the deviation bound for fixed θ is of order O(
√

1/n+ 1/n′) as shown in Theorem 1. For this
special estimation problem, the convergence rate of the uniform deviation bound is clearly
worse than the convergence rate of the deviation bound for fixed θ.

However, after obtaining the uniform deviation bound, we are able to bound the esti-
mation error, that is, the gap between the expectation of our estimate and the best possible
estimate within the model. To do so, we need to constrain the parameters of the best
estimate via Cα since (10) takes (9) as the target, while (9) is an unbounded function.
Furthermore, we assume that the regularization is weak enough so that it would not affect
the solution α̂ too much. Specifically, given D, let α̃ be the minimizer of the objective
function in (11) but without the regularization term λ

2

∑b
`=1 α

2
` , subjecting to ‖α̃‖2 ≤ Cα.

Let p̃enL1(θ;D) be an estimator of the penalized L1-distance corresponding to α̃, and we

assume that there exists ∆α > 0 such that ∀θ, ∀D, p̃enL1(θ;D)− p̂enL1(θ;D) ≤ ∆α. Then
we have the following theorem.

Theorem 3 (Estimation error bound) Let penL1(θ) be the maximizer of the estimate
in the right-hand side of (7) based on (10) with the best possible α∗ where ‖α∗‖2 ≤ Cα. For
any 0 < δ < 1, with probability at least 1− δ over the repeated sampling of D, the following
holds for all 0 ≤ θ ≤ 1,

penL1(θ)− ED[p̂enL1(θ;D)] ≤ ∆α +

(
4√
n

+
4√
n′

)
CαCx

+

√√√√ ln(2/δ)

2λ2/b2

(
1

n

(
2 +

1

n

)2

+
1

n′

(
2 +

1

n′

)2
)
.
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Proof 3 Since α∗ is fixed, we have ED[penL1(θ;D)] = penL1(θ). Then,

penL1(θ)− ED[p̂enL1(θ;D)] = ED[penL1(θ;D)]− ED[p̂enL1(θ;D)]

= (ED[penL1(θ;D)]− penL1(θ;D)) +
(

p̂enL1(θ;D)− ED[p̂enL1(θ;D)]
)

+
(

penL1(θ;D)− p̃enL1(θ;D)
)

+
(

p̃enL1(θ;D)− p̂enL1(θ;D)
)
.

We bound each of the four terms separately. According to the proof of Theorem 2, with
probability at least 1− δ/2, ∀θ,

ED[penL1(θ;D)]− penL1(θ;D)

≤
(

2√
n

+
2√
n′

)
CαCx +

√√√√ ln(2/δ)

2λ2/b2

(
1

n

(
2 +

1

n

)2

+
1

n′

(
2 +

1

n′

)2
)
,

The same can be proven for p̂enL1(θ;D) − ED[p̂enL1(θ;D)]. The third term must be non-

positive since p̃enL1(θ;D) is the maximizer of the empirical estimate. Finally, the four term
is upper bounded by ∆α, which completes the proof. �

Theorem 3 shows that the deviation from the expectation of our estimate from the
optimal value in the model is small with high probability.

4. Related work

In Scott and Blanchard (2009) and Blanchard et al. (2010), it was proposed to reduce
the problem of estimating the class prior to Neyman-Pearson classification2. A Neyman-
Pearson classifier f minimizes the false-negative rate R1(f), while keeping the false-positive
rate R−1(f) constrained under a user-specified threshold (Scott and Nowak, 2005):

R1(f) = P1(f(x) 6= 1), R−1(f) = P−1(f(x) 6= −1),

where P1 and P−1 denote the probabilities for the positive-class and negative-class condi-
tional densities, respectively. The false-negative rate on the unlabeled dataset is defined
and expressed as

RX(f) = PX(f(x) = 1)

= π(1−R1(f)) + (1− π)R−1(f),

where PX denotes the probability for unlabeled input data density.
The Neyman-Pearson classifier between P1 and PX is defined as

R∗X,α = inf
f

RX(f) s.t. R1(f) ≤ α.

2. The papers (Scott and Blanchard, 2009; Blanchard et al., 2010) considered the nominal class as y = 0,
and the novel class as y = 1. The aim was to estimate p(y = 1). We use a different notation with
the nominal class as y = 1 and the novel class as y = −1 and estimate π = p(y = 1). To simplify the
exposition, we use the same notation here as in the rest of the paper.
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Then the minimum false-negative rate for the unlabeled dataset given false positive rate α
is expressed as

R∗X,α = θ(1− α) + (1− θ)R∗−1,α. (12)

Theorem 1 in Scott and Blanchard (2009) says that if the supports for P1 and P−1 are
different, there exists α such that R∗−1,α = 0. Therefore, the class prior can be determined
as

θ = −
dR∗X,α

dα

∣∣∣∣∣
α=1−

, (13)

where α → 1− is the limit from the left-hand side. Note that this limit is necessary since
the first term in (12) will be zero when α = 1.

However, estimating the derivative when α→ 1− is not straightforward in practice. The
curve of 1−R∗X vs. R∗1 can be interpreted as an ROC curve (with a suitable change in class
notation), but the empirical ROC curve is often unstable at the right endpoint when the
input dimensionality is high (Sanderson and Scott, 2014). One approach to overcome this
problem is to fit a curve to the right endpoint of the ROC curve in order to enable the
estimation (as in Sanderson and Scott (2014)). However, it is not clear how the estimated
class-prior is affected by this curve-fitting.

5. Experiments

In this section, we experimentally compare the performance of the proposed method and
alternative methods for estimating the class prior. We compared the following methods:

• EN: The method of Elkan and Noto (2008) with the classifier as a squared-loss variant
of logistic regression classifier (Sugiyama, 2010).

• PE: The direct Pearson-divergence matching method proposed in du Plessis and
Sugiyama (2014).

• SB The method of Blanchard et al. (2010). The Neyman-Pearson classifier was im-
plemented as a the thresholded ratio of two kernel density estimates, each with a
bandwidth parameter. As in Blanchard et al. (2010), the bandwidth parameters were
jointly optimized by maximizing the cross-validated estimate of the AUC. The prior
was obtained by estimating (13) from the empirical ROC curve.

• pen-L1 (proposed): The penalized L1-distance method with an analytic solution.
The basis functions were selected as Gaussians centered at all training samples. All
hyper-parameters were determined by cross-validation.

First, we illustrate the systematic overestimation of the class prior by two previously
proposed methods, EN (Elkan and Noto, 2008) and PE (du Plessis and Sugiyama, 2014)
when the classes significantly overlap. The class-conditional densities are

p(x|y = 1) = Nx
(
0, 12

)
and p(x|y = −1) = Nx

(
2, 12

)
,
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Figure 2: Histograms of class-prior estimates when the true class prior is p(y = 1) = 0.2.
The EN method and the PE method have an intrinsic bias that does not decrease
even when the number of samples is increased, while the SB method and the
proposed pen-L1 method work reasonably well.

where Nx
(
µ, σ2

)
denotes the Gaussian density with mean µ and variance σ2 with respect to

x. The true class prior is set at π = p(y = 1) = 0.2. The sizes of the unlabeled dataset and
the labeled dataset were both set at n = n′ = 300. The histograms of class prior estimates
are plotted in Figure 2, showing that the EN and PE methods clearly overestimate the
true class prior. We also confirmed that this overestimation does not decrease even when
the number of samples is increased. On the other hand, the SB and pen-L1 methods work
reasonably well.

Finally, we use the MNIST hand-written digit dataset. For each digit, all the other
digits were assumed to be in the opposite class (i.e., one-versus-rest). The dataset was
reduced to 4-dimensions using principal component analysis. The squared error of class-
prior estimation is given in Figure 3, showing that the proposed pen-L1 method overall
gives accurate estimates of the class prior, while the EN and PE methods tend to give less
accurate estimates for low class priors and more accurate estimates for higher class priors,
which agrees with the observation in du Plessis and Sugiyama (2014). On the other hand,
the SB method tends to perform poorly, which is caused by the instability of the empirical
ROC curve at the right endpoint when the input dimensionality is larger, as pointed out in
Section 4.

6. Conclusion

In this paper, we discussed the problem of class-prior estimation from positive and unla-
beled data. We first showed that class-prior estimation from positive and unlabeled data by
partial distribution matching under f -divergences yields systematic overestimation of the
class prior. We then proposed to use penalized f -divergences to rectify this problem. We
further showed that the use of L1-distance as an example of f -divergences yields a compu-
tationally efficient algorithm with an analytic solution. We provided its uniform deviation
bound and estimation error bound, which theoretically supports the usefulness of the pro-
posed method. Finally, through experiments, we demonstrated that the proposed method
compares favorably with existing approaches.
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Figure 3: Class-prior estimation accuracy for the MNIST dataset. The EN method and
the PE method behave similarly, and the proposed pen-L1 method consistently
outperforms them. The SB method performed poorly due to the instability of
the empirical ROC curve at the right endpoint.
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